A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution
- PMID: 18166054
- PMCID: PMC2453067
- DOI: 10.1021/ja077082c
A single-molecule nanopore device detects DNA polymerase activity with single-nucleotide resolution
Abstract
The ability to monitor DNA polymerase activity with single-nucleotide resolution has been the cornerstone of a number of advanced single-molecule DNA sequencing concepts. Toward this goal, we report the first observation of the base-by-base DNA polymerase activity with single-base resolution at the single-molecule level. We describe the design and characterization of a supramolecular nanopore device capable of detecting up to nine consecutive DNA polymerase-catalyzed single-nucleotide primer extensions with high sensitivity and spatial resolution (<or=2.4 A). The device is assembled in a suspended lipid membrane by threading and mechanically capturing a single strand of DNA-PEG copolymer inside an alpha-hemolysin protein pore. Single-nucleotide primer extensions result in successive displacements of the template DNA strand within the protein pore, which can be monitored by the corresponding stepped changes in the ion current flowing through the pore under an applied transmembrane potential. The system described thus represents a promising advance toward nanopore-mediated single-molecule DNA sequencing concept and, in addition, might be applicable to studying a number of other biopolymer-protein interactions and dynamics.
Figures



Similar articles
-
Sensing single base incorporation with nanopore micromanipulation.ACS Chem Biol. 2008 Feb 15;3(2):92-4. doi: 10.1021/cb8000205. ACS Chem Biol. 2008. PMID: 18278849
-
Real-time monitoring of DNA polymerase function and stepwise single-nucleotide DNA strand translocation through a protein nanopore.Angew Chem Int Ed Engl. 2010 Dec 27;49(52):10106-9. doi: 10.1002/anie.201005460. Angew Chem Int Ed Engl. 2010. PMID: 21105031 Free PMC article. No abstract available.
-
Nanopore sequencing: from imagination to reality.Clin Chem. 2015 Jan;61(1):25-31. doi: 10.1373/clinchem.2014.223016. Epub 2014 Dec 4. Clin Chem. 2015. PMID: 25477535 Free PMC article. No abstract available.
-
Characterization of nucleic acids by nanopore analysis.Acc Chem Res. 2002 Oct;35(10):817-25. doi: 10.1021/ar000138m. Acc Chem Res. 2002. PMID: 12379134 Review.
-
Solid-state nanopores towards single-molecule DNA sequencing.J Hum Genet. 2020 Jan;65(1):69-77. doi: 10.1038/s10038-019-0655-8. Epub 2019 Aug 16. J Hum Genet. 2020. PMID: 31420594 Review.
Cited by
-
Direct observation of translocation in individual DNA polymerase complexes.J Biol Chem. 2012 Apr 13;287(16):13407-21. doi: 10.1074/jbc.M111.338418. Epub 2012 Feb 29. J Biol Chem. 2012. PMID: 22378784 Free PMC article.
-
Multiple base-recognition sites in a biological nanopore: two heads are better than one.Angew Chem Int Ed Engl. 2010;49(3):556-9. doi: 10.1002/anie.200905483. Angew Chem Int Ed Engl. 2010. PMID: 20014084 Free PMC article.
-
Colloquium: Ionic phenomena in nanoscale pores through 2D materials.Rev Mod Phys. 2019;91:10.1103/RevModPhys.91.021004. doi: 10.1103/RevModPhys.91.021004. Rev Mod Phys. 2019. PMID: 31579274 Free PMC article.
-
Electrical Current Signatures of DNA Base Modifications in Single Molecules Immobilized in the α-Hemolysin Ion Channel.Isr J Chem. 2013 Jun 1;53(6-7):417-430. doi: 10.1002/ijch.201300022. Isr J Chem. 2013. PMID: 24052667 Free PMC article.
-
Long dwell-time passage of DNA through nanometer-scale pores: kinetics and sequence dependence of motion.Biophys J. 2011 Jun 22;100(12):2974-80. doi: 10.1016/j.bpj.2011.05.007. Biophys J. 2011. PMID: 21689531 Free PMC article.
References
-
- Maier B, Bensimon D, Croquette V. Proc. Natl. Acad. Sci. USA. 2000;97:12002–12007. - PMC - PubMed
- Braslavsky I, Hebert B, Kartalov E, Quake SR. Proc. Natl. Acad. Sci. USA. 2003;100:3960–3964. - PMC - PubMed
- Bustamante C, Bryant Z, Smith SB. Nature. 2003;421:423–427. - PubMed
- Abbondanzieri EA, Greenleaf WJ, Shaevitz JW, Landick R, Block SM. Nature. 2005;438:460–465. - PMC - PubMed
- Greenleaf WJ, Block SM. Science. 2006;313:801. - PMC - PubMed
-
- Sanchez-Quesada J, Saghatelian A, Cheley S, Bayley H, Ghadiri MR. Angew. Chem. Int. Ed. 2004;43:3063–3067. - PMC - PubMed
- Mathe J, Visram H, Viasnoff V, Rabin Y, Meller A. Biophys. J. 2004;87:3205–3212. - PMC - PubMed
- Nakane J, Wiggin M, Marziali A. Biophys. J. 2004;87:615–621. - PMC - PubMed
- Ashkenasy N, Sanchez-Quesada J, Bayley H, Ghadiri MR. Angew. Chem. Int. Ed. 2005;44:1401–1404. - PMC - PubMed
-
- Kasianowicz JJ, Brandin E, Branton D, Deamer DW. Proc. Natl. Acad. Sci. USA. 1996;93:13770–13773. - PMC - PubMed
- Vercoutere W, Winters-Hilt S, Olsen H, Deamer DW, Haussler D, Akeson M. Nat. Biotechnol. 2001;19:248–252. - PubMed
- Rhee M, Burns MA. Trends Biotechnol. 2006;24:580–586. - PubMed
- Astier Y, Braha O, Bayley H. J. Am. Chem. Soc. 2006;128:1705–1710. - PubMed
-
- Movileanu L, Howorka S, Braha O, Bayley H. Nat. Biotechnol. 2000;18:1091–1095. - PubMed
- Howorka S, Cheley S, Bayley H. Nat. Biotechnol. 2001;19:636–639. - PubMed
- Cheley S, Xie H, Bayley H. ChemBioChem. 2006;7:1923–1927. - PubMed
- Hornblower B, Coombs A, Whitaker RD, Kolomeisky A, Picone SJ, Meller A, Akeson M. Nat. Methods. 2007;4:315–317. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources