Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations
- PMID: 18166498
- PMCID: PMC2442829
- DOI: 10.1016/j.drup.2007.11.003
Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations
Abstract
The PI3K/Akt/mTOR pathway is a prototypic survival pathway that is constitutively activated in many types of cancer. Mechanisms for pathway activation include loss of tumor suppressor PTEN function, amplification or mutation of PI3K, amplification or mutation of Akt, activation of growth factor receptors, and exposure to carcinogens. Once activated, signaling through Akt can be propagated to a diverse array of substrates, including mTOR, a key regulator of protein translation. This pathway is an attractive therapeutic target in cancer because it serves as a convergence point for many growth stimuli, and through its downstream substrates, controls cellular processes that contribute to the initiation and maintenance of cancer. Moreover, activation of the Akt/mTOR pathway confers resistance to many types of cancer therapy, and is a poor prognostic factor for many types of cancers. This review will provide an update on the clinical progress of various agents that target the pathway, such as the Akt inhibitors perifosine and PX-866 and mTOR inhibitors (rapamycin, CCI-779, RAD-001) and discuss strategies to combine these pathway inhibitors with conventional chemotherapy, radiotherapy, as well as newer targeted agents. We will also discuss how the complex regulation of the PI3K/Akt/mTOR pathway poses practical issues concerning the design of clinical trials, potential toxicities and criteria for patient selection.
Figures
References
-
- Albert JM, Kim KW, Cao C, Lu B. Targeting the Akt/mammalian target of rapamycin pathway for radiosensitization of breast cancer. Mol Cancer Ther. 2006;5:1183–1189. - PubMed
-
- Ali UI, Schriml LM, Dean M. Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity. J Natl Cancer Inst. 1999;91:1922–1932. - PubMed
-
- Alkan S, Izban KF. Immunohistochemical localization of phosphorylated AKT in multiple myeloma. Blood. 2002;99:2278–2279. - PubMed
-
- Andjelkovic M, Alessi DR, Meier R, et al. Role of translocation in the activation and function of protein kinase B. J Biol Chem. 1997;272:31515–31524. - PubMed
-
- Argiris A, Cohen E, Karrison T, et al. A phase II trial of perifosine, an oral alkylphospholipid, in recurrent or metastatic head and neck cancer. Cancer Biol Ther. 2006;5:766–770. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous
