Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jan 2;3(1):e1398.
doi: 10.1371/journal.pone.0001398.

Molecular characterization of spontaneous mesenchymal stem cell transformation

Affiliations

Molecular characterization of spontaneous mesenchymal stem cell transformation

Daniel Rubio et al. PLoS One. .

Abstract

Background: We previously reported the in vitro spontaneous transformation of human mesenchymal stem cells (MSC) generating a population with tumorigenic potential, that we termed transformed mesenchymal cells (TMC).

Methodology/principal findings: Here we have characterized the molecular changes associated with TMC generation. Using microarrays techniques we identified a set of altered pathways and a greater number of downregulated than upregulated genes during MSC transformation, in part due to the expression of many untranslated RNAs in MSC. Microarray results were validated by qRT-PCR and protein detection.

Conclusions/significance: In our model, the transformation process takes place through two sequential steps; first MSC bypass senescence by upregulating c-myc and repressing p16 levels. The cells then bypass cell crisis with acquisition of telomerase activity, Ink4a/Arf locus deletion and Rb hyperphosphorylation. Other transformation-associated changes include modulation of mitochondrial metabolism, DNA damage-repair proteins and cell cycle regulators. In this work we have characterized the molecular mechanisms implicated in TMC generation and we propose a two-stage model by which a human MSC becomes a tumor cell.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Cell cycle regulation.
(A) x-fold change, p-value and Z-score of cell cycle regulators expression measured by microarray analysis between pre- and post-senescence MSC and post-senescence MSC and TMC. (B) Relative mRNA expression of Cyclin D1 (CCND1), and cyclin-dependent kinases 2 (CDK2) and 6 (CDK6) in pre- and post-senescence MSC, TMC and met-TMC analyzed by qRT-PCR. (C) Western blot analysis of cell cycle regulator protein expression in pre- and post-senescence MSC and two TMC samples. α-tubulin was used as loading control.
Figure 2
Figure 2. DNA repair regulation.
(A) x-fold change, p-value and Z-score of DNA repair-related gene expression measured by microarray analysis between pre- and post-senescence MSC and post-senescence MSC and TMC. (B) Relative mRNA expression of ERCC3, DNA ligase IV (LIG IV), DNA polymerase β (POLβ) and μ (POLμ), RAD51, XPA and XRCC4 in pre- and post-senescence MSC, TMC and met-TMC analyzed by qRT-PCR. (C) Western blot analysis of DNA repair-related protein expression in pre- and post-senescence MSC and two TMC samples. α-tubulin was used as loading control.
Figure 3
Figure 3. Regulation of oncogenes and tumor suppressor genes.
(A) x-fold change, p-value and Z-score of oncogenes and tumor suppressor genes measured by microarray analysis between pre- and post-senescence MSC and post-senescence MSC and TMC. (B) Relative mRNA expression of p16 analyzed by qRT-PCR in different samples of pre-senescence MSC (n = 4), post-senescence MSC (n = 3) and TMC (n = 3). (C) Homozygous deletion analysis of p14, p15 (D) and p16 (E) genes. β-actin was used as internal PCR control. Control cell lines were normal lymphocytes (NL), HCT116 and MDA-MB231. (F) Western blot analysis of p21 expression in pre- and post-senescence MSC, TMC and met-TMC. α-tubulin was used as loading control. (G) Analysis of p53 activation following UV irradiation of cells. p53 levels and phosphorylation were tested in pre- and post-senescence MSC, in two TMC samples and a sample of met-TMC. α-tubulin was used as loading control. (H) Rb protein levels and phosphorylation tested in pre- and post-senescence MSC, two samples of TMC and a met-TMC sample. α-tubulin was used as loading control.
Figure 4
Figure 4. Model of spontaneous human MSC transformation.
Sequence of steps: morphologic, karyotypic, and molecular alterations during TMC generation. Black and blue boxes represent chromosomes, orange boxes represent telomeres.

Similar articles

Cited by

References

    1. Hahn WC, Weinberg RA. Rules for making human tumor cells. N Engl J Med. 2002;347:1593–1603. - PubMed
    1. Hahn WC, Weinberg RA. Modelling the molecular circuitry of cancer. Nat Rev Cancer. 2002;2:331–341. - PubMed
    1. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–111. - PubMed
    1. Dalerba P, Cho RW, Clarke MF. Cancer stem cells: models and concepts. Annu Rev Med. 2007;58:267–284. - PubMed
    1. Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer. 2003;3:895–902. - PubMed

Publication types

MeSH terms