Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Feb 1;3(2):164-94.
doi: 10.1002/asia.200700247.

Metal vinylidenes as catalytic species in organic reactions

Affiliations
Review

Metal vinylidenes as catalytic species in organic reactions

Barry M Trost et al. Chem Asian J. .

Abstract

Organic vinylidene species have found limited use in organic synthesis owing to their inaccessibility. In contrast, metal vinylidenes are much more stable and may be readily accessed through transition-metal activation of terminal alkynes. These electrophilic species may be trapped by a number of nucleophiles. Additionally, metal vinylidenes can participate in pericyclic reactions and processes that involve migration of a metal ligand to the vinylidene species. This Focus Review addresses the reactions and applications of metal vinylidenes in organic synthesis.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Ruthenium Catalysts for Anti-Markovnikov Alkyne Hydration.
Scheme 1
Scheme 1
Terminal Alkyne and the Corresponding Vinylidene
Scheme 2
Scheme 2
Synthetic Use of an Organic Vinylidene: Dreiding’s Synthesis of (+/−)-Isoptychanolide. FVT=flash vacuum thermolysis.
Scheme 3
Scheme 3
Formation of Metal Vinylidenes from Terminal Alkynes
Scheme 4
Scheme 4
Mechanisms of Metal Vinylidene Formation
Scheme 5
Scheme 5
Nucleophilic Addition to Metal Vinylidenes: Fischer Carbene Formation
Scheme 6
Scheme 6
Vinylcarbamates from Terminal Alkynes, Secondary Amines, and Carbon Dioxide
Scheme 7
Scheme 7
Mechanism of Vinylcarbamate Formation
Scheme 8
Scheme 8
Synthesis of Vinylcarbamates: Scope of Alkynes and Secondary Amines. dppe=bis(diphenylphosphino)ethane, nbd=norbornadiene, THF=tetrahydrofuran.
Scheme 9
Scheme 9
Formation of Enol Esters from Carboxylic Acids and Alkynes
Scheme 10
Scheme 10
Mechanism of Enol Ester Formation
Scheme 11
Scheme 11
Ruthenium-Catalyzed Formation of Enol Esters: Scope of Alkynes. dppb=bis(diphenylphosphino)butane.
Scheme 12
Scheme 12
Dixneuf’s Isomerization of Propargyl Alcohols to Enals. dppe=bis(diphenylphosphino)ethane, TsOH=p-toluenesulfonic acid.
Scheme 13
Scheme 13
Valerga’s Cyclization of α,ω-Alkynoic Acids
Scheme 14
Scheme 14
Ruthenium-Catalyzed Reconstitutive Condensation. Cp=η5-cyclopentadienyl.
Scheme 15
Scheme 15
Proposed Mechanism of Ruthenium-Catalyzed Reconstitutive Condensation
Scheme 16
Scheme 16
Trost’s Synthesis of a Functionalized Steroid Side Chain. Cp=η5-cyclopentadienyl., DMF=N,N-dimethylformamide, LDA=lithium diisopropylamide, THF=tetrahydrofuran.
Scheme 17
Scheme 17
Trost’s Synthesis of Rosefuran. Cp=η5-cyclopentadienyl., DMSO=dimethyl sulfoxide, NMO=N-methylmorpholine-N-oxide, TsOH=p-toluenesulfonic acid.
Scheme 18
Scheme 18
Trost’s Tandem Cyclization-Reconstitutive Condensation. Cp=η5-cyclopentadienyl.
Scheme 19
Scheme 19
Mechanism of Trost’s Tandem Cyclization-Reconstitutive Condensation. Cp=η5-cyclopentadienyl.
Scheme 20
Scheme 20
Trost’s Synthesis of The Spiroketal Subunit of (−)-Calyculin A. Cp=η5-cyclopentadienyl, (DHQD)PHN=dihydroquinidine 9-O-(9′-phenanthryl) ether, DIBALH=diisobutylaluminum hydride, PDC=pyridinium dichromate, TFA=trifluoroacetic acid, TsOH=p-toluenesulfonic acid.
Scheme 21
Scheme 21
McDonald’s Seminal Alkynol Cycloisomerization Reaction
Scheme 22
Scheme 22
Mechanism of Molybdenum-Catalyzed Alkynol Cycloisomerization
Scheme 23
Scheme 23
McDonald’s Syntheses of Stavudine and Cordycepin. DCE=1,2-dichloroethane, DIPT=diisopropyltartrate, M. S.=molecular sieves, NMO=N-methylmorpholine-N-oxide, THF=tetrahydrofuran, TMSOTf=trimethylsilyl trifluoromethanesulfonate.
Scheme 24
Scheme 24
McDonald’s Syntheses of 3-Aminonucleosides
Scheme 25
Scheme 25
McDonald’s Retrosynthetic Analysis of Digitoxin
Scheme 26
Scheme 26
McDonald’s Iterative Cycloisomerization Approach to Digitoxin. DIBALH=diisobutylaluminum hydride, DIPT=diisopropyltartrate, TBAF=tetrabutylammonium fluoride, TBSCl=tert-butyldimethylsilyl chloride, THF=tetrahydrofuran.
Scheme 27
Scheme 27
McDonald’s Syntheses of (L)-Vancosamine and (D)-Desosamine Glycals. DABCO=1,4-diazabicyclo[2.2.2]octane, THF=tetrahydrofuran.
Scheme 28
Scheme 28
McDonald’s Formation of α-Stannyl Vinyl Ethers from Alkynols. THF=tetrahydrofuran.
Scheme 29
Scheme 29
Ruthenium-Catalyzed Oxidative Cyclization of Homopropargyl Alcohols. COD=1,5-cyclooctadiene, Cp=η5-cyclopentadienyl, DMF=N,N-dimethylformamide.
Scheme 30
Scheme 30
Oxidative Cyclization vs. Cycloisomerization of Bis-homopropargyl Alcohols. Cp=η5-cyclopentadienyl, DMF=N,N-dimethylformamide.
Scheme 31
Scheme 31
Proposed Mechanism of Ruthenium-Catalyzed Oxidative Cyclization and Cycloisomerization
Scheme 32
Scheme 32
Trost’s Iterative Approach to Trans-Fused Polycyclic Ethers. BnBr=benzyl bromide, Cp=η5-cyclopentadienyl, DBU=1,8-diazabicyclo[5.4.0]undec-7-ene, DMDO=dimethyl dioxirane, DMF=N,N-dimethylformamide, PCC=pyridinium chlorochromate, THF=tetrahydrofuran, TsOH=p-toluenesulfonic acid.
Scheme 33
Scheme 33
Rhodium-Catalyzed Cycloisomerization of Homo- and Bis-homopropargyl Alcohols. COD=1,5-cyclooctadiene, DMF=N,N-dimethylformamide.
Scheme 34
Scheme 34
Wakatsuki’s Anti-Markovnikov Hydration of Terminal Acetylenes
Scheme 35
Scheme 35
Mechanism of Anti-Markovnikov Alkyne Hydration
Scheme 36
Scheme 36
Wakatsuki’s Isomerization of Propargyl Alcohols. Cp=η5-cyclopentadienyl.
Scheme 37
Scheme 37
Proposed Mechanism of Propargyl Alcohol Isomerization. Cp=η5-cyclopentadienyl.
Scheme 38
Scheme 38
Lee’s Hydrative Cyclization of 1,5-Enynes. dppm=bis(diphenylphosphino)methane.
Scheme 39
Scheme 39
Proposed Mechanism for Lee’s Hydrative Cyclization of 1,5-Enynes. dppm=bis(diphenylphosphino)methane.
Scheme 40
Scheme 40
Formation of Furans from Epoxyalkynes. DCE=1,2-dichloroethane, Tp=tris(pyrazolyl)borate.
Scheme 41
Scheme 41
Mechanism of Furan Formation from Epoxyalkynes.
Scheme 42
Scheme 42
Liu’s Syntheses of 2-Naphthols and 1-Alkylidene-2-Indanones. Tp=tris(pyrazolyl)borate.
Scheme 43
Scheme 43
Mechanism of 2-Naphthol and 1-Alkylidene-2-Indanone Formation. Tp=tris(pyrazolyl)borate.
Scheme 44
Scheme 44
Liu’s Formation of 1-Iodo-2-Naphthols. Tp=tris(pyrazolyl)borate.
Scheme 45
Scheme 45
Uemura’s Synthesis and Diels-Alder Reaction of Pyranylidenes. DMAD= dimethylacetylene dicarboxylate, THF=tetrahydrofuran.
Scheme 46
Scheme 46
Iwasawa’s Synthesis and Diels-Alder Reaction of Benzopyranylidenes. THF=tetrahydrofuran.
Scheme 47
Scheme 47
Uemura’s Catalytic Synthesis of Phenols from cis-1-Acyl-2-ethynylcyclopropanes. THF=tetrahydrofuran.
Scheme 48
Scheme 48
Mechanism of Phenol Formation from cis-1-Acyl-2-ethynylcyclopropanes. THF=tetrahydrofuran.
Scheme 49
Scheme 49
Cycloisomerization of Homopropargyl Thiols. DBU=1,8-diazabicyclo[5.4.0]undec-7-ene, THF=tetrahydrofuran.
Scheme 50
Scheme 50
Watanabe’s Synthesis of an Enamide from Acetanilide and 1-Octyne
Scheme 51
Scheme 51
Gooβen’s Synthesis of Enamides from Amides and Alkynes. COD=1,5-cyclooctadiene, DMAP=4-dimethylaminopyridine.
Scheme 52
Scheme 52
Fukumoto’s Nitrile Synthesis from N,N-Dimethylhydrazine and Alkynes. Tp=tris(pyrazolyl)borate.
Scheme 53
Scheme 53
Proposed Mechanism of Fukumoto’s Nitrile Synthesis. Tp=tris(pyrazolyl)borate.
Scheme 54
Scheme 54
McDonald’s Cycloisomerization of Homo- and Bis-homopropargyl Amines. THF=tetrahydrofuran.
Scheme 55
Scheme 55
Trost’s Cycloisomerization of o-Ethynylanilines to Indoles
Scheme 56
Scheme 56
Jun’s Chelation-Assisted Hydrative Dimerization of Terminal Alkynes. THF=tetrahydrofuran.
Scheme 57
Scheme 57
Mechanism of Jun’s Chelation-Assisted Hydrative Dimerization of Terminal Alkynes
Scheme 58
Scheme 58
Hydrophosphination of Propargyl Alcohols. COD=1,5-cyclooctadiene, Cp=η5-cyclopentadienyl.
Scheme 59
Scheme 59
Cyclization of Homo- and Bis-homopropargyl β-Dicarbonyl Compounds
Scheme 60
Scheme 60
Mechanism of McDonald’s Homopropargyl β-Dicarbonyl Cycloisomerization
Scheme 61
Scheme 61
Iwasawa’s Cycloisomerization of Homo- and Bis-homopropargyl Silyl Enol Ethers. THF=tetrahydrofuran.
Scheme 62
Scheme 62
Iwasawa’s Cyclopentene Annulation Method. DABCO=1,4-diazabicyclo[2.2.2]octane, TBSOTf= tert-butyldimethylsilyl trifluoromethanesulfonate, THF=tetrahydrofuran.
Scheme 63
Scheme 63
Iwasawa’s Cyclopentene Annulation Method: Iodine Migration. THF=tetrahydrofuran.
Scheme 64
Scheme 64
Lee’s N-Propargyl Enamine Cycloisomerization. DABCO=1,4-diazabicyclo[2.2.2]octane, DMF= N,N-dimethylformamide.
Scheme 65
Scheme 65
Proposed Mechanism of N-Propargyl Enamine Cycloisomerization
Scheme 66
Scheme 66
Merlic’s Dienyne Cycloisomerization
Scheme 67
Scheme 67
Plausible Mechanism for Dienyne Cycloisomerization
Scheme 68
Scheme 68
Scott’s Naphthonannulation Procedure. DCE=1,2-dichloroethane, TBAF=tetrabutylammonium fluoride.
Scheme 69
Scheme 69
Iwasawa’s Dienyne Cycloisomerization. THF=tetrahydrofuran.
Scheme 70
Scheme 70
Akiyama’s Cycloisomerization of Alkynyl Imines. NMO= N-methylmorpholine N-oxide, THF=tetrahydrofuran.
Scheme 71
Scheme 71
Liu’s Electrocyclization and Halide Migration. Tp=tris(pyrazolyl)borate.
Scheme 72
Scheme 72
Mechanism of Liu’s Electrocyclization and Halide Migration. Tp=tris(pyrazolyl)borate.
Scheme 73
Scheme 73
Liu’s Formation of Substituted Benzenes and 2-Vinyl 1H-Indenes. Tp=tris(pyrazolyl)borate.
Scheme 74
Scheme 74
Mechanism of Liu’s Substituted Benzene Synthesis. Tp=tris(pyrazolyl)borate.
Scheme 75
Scheme 75
Mechanism of Liu’s 2-Vinyl 1H-Indene Synthesis. Tp=tris(pyrazolyl)borate.
Scheme 76
Scheme 76
Murakami’s Intermolecular Alkene-Alkyne Coupling. Cp=η5-Cyclopentadienyl.
Scheme 77
Scheme 77
Mechanism of Intermolecular Enyne Coupling. Cp=η5-Cyclopentadienyl.
Scheme 78
Scheme 78
Murakami’s Tandem Enyne Coupling-Electrocyclization. Cp=η5-Cyclopentadienyl.
Scheme 79
Scheme 79
Murakami’s Alkenylation of Pyridine. Cp=η5-Cyclopentadienyl.
Scheme 80
Scheme 80
Rhodium-Catalyzed Enyne Cycloisomerization. COD=1,5-cyclooctadiene, DMF= N,N-dimethylformamide.
Scheme 81
Scheme 81
Mechanism of Rhodium-Catalyzed Enyne Cycloisomerization. COD=1,5-cyclooctadiene.
Scheme 82
Scheme 82
Lee’s Tandem Cyclization of 1,6-Enyne Systems. COD=1,5-cyclooctadiene, DMF= N,N-Dimethylformamide.
Scheme 83
Scheme 83
Mechanism of the Tandem 1,6-Enyne Cyclization. COD=1,5-cyclooctadiene.
Scheme 84
Scheme 84
Buono’s Palladium-Catalyzed [2+1] Cycloaddition
Scheme 85
Scheme 85
Mechanism of Buono’s Palladium-Catalyzed [2+1] Cycloaddition
Scheme 86
Scheme 86
Tagliatesta’s Synthesis of 1-Arylnaphthalenes
Scheme 87
Scheme 87
Mechanism of 1-Arylnaphthalene Formation from Arylacetylenes
Scheme 88
Scheme 88
Liu’s Cyclopentadiene Synthesis. Tp= tris(pyrazolyl)borate.
Scheme 89
Scheme 89
Mechanism of Cyclopentadiene Formation. Tp= tris(pyrazolyl)borate.
Scheme 90
Scheme 90
Finn’s Stoichiometric Metal-Mediated Cycloaromatization. Cp=η5-Cyclopentadienyl.
Scheme 91
Scheme 91
Uemura’s Rhodium-Catalyzed Cycloaromatization: 1,5-Hydrogen Migration
Scheme 92
Scheme 92
Mechanism of Rhodium-Catalyzed Cycloaromatization: 1,5-Hydrogen Migration
Scheme 93
Scheme 93
Uemura’s Rhodium-Catalyzed Cycloaromatization: 1,6-Hydrogen Migration
Scheme 94
Scheme 94
Mechanism of Rhodium-Catalyzed Cycloaromatization: 1,6-Hydrogen Migration
Scheme 95
Scheme 95
Yamazaki’s Dimerization of t-Butylacetylene
Scheme 96
Scheme 96
Catalytic Cycle for Yamazaki’s Dimerization of t-Butylacetylene
Scheme 97
Scheme 97
Bianchini’s Dimerization of Trimethylsilylacetylene and Phenylacetylene. THF=tetrahydrofuran.
Scheme 98
Scheme 98
Yi’s Stereoselective Dimerization of Phenylacetylene: Ligand Effect. Cp*=1,2,3,4,5-η5-pentamethylcyclopentadienyl, THF=tetrahydrofuran.
Scheme 99
Scheme 99
Alkyne Dimerization: Rationale for Product Formation. Cp*=1,2,3,4,5-η5-pentamethylcyclopentadienyl.
Scheme 100
Scheme 100
Hidai’s Head-to-Head Dimerization of Aliphatic Terminal Alkynes. Cp*=1,2,3,4,5-η5-pentamethylcyclopentadienyl.
Scheme 101
Scheme 101
Bianchini’s Dimerization of Aromatic and Aliphatic Terminal Alkynes
Scheme 102
Scheme 102
Katayama’s Cross-Dimerization of Arylacetylenes with Silylacetylenes
Scheme 103
Scheme 103
Lee’s Carboxylative Cyclization of 1,6-Diynes
Scheme 104
Scheme 104
Mechanism of the 1,6-Diyne Carboxylative Cyclization
Scheme 105
Scheme 105
Lee’s Arylative Cyclization of 1,5-Enynes. COD=1,5-cyclooctadiene.
Scheme 106
Scheme 106
Mechanism of 1,5-Enyne Arylative Cyclization. COD=1,5-cyclooctadiene.
Scheme 107
Scheme 107
Miyaura’s Z-Selective Hydroboration of Terminal Alkynes. COD=1,5-cyclooctadiene.
Scheme 108
Scheme 108
Z-Selective Hydroboration of Terminal Alkynes: Mechanistic Rationale. COD=1,5-cyclooctadiene.

References

    1. Huguet J, Karpf M, Dreiding AS. Tetrahedron Lett. 1983;24:4177–4180.
    2. Solaja B, Huguet J, Karpf M, Dreiding AS. Tetrahedron. 1987;43:4875–4886.
    1. Bruce MI, Swincer AG. Adv Organomet Chem. 1983;22:59.
    2. Werner H. Angew Chem Int Ed Engl. 1990;29:1077–1089.
    3. Bruce MI. Chem Rev. 1991;91:197–257.
    4. Bruce MI. Chem Rev. 1998;98:2797–2858. - PubMed
    1. Wolf J, Werner H, Serhadli O, Ziegler ML. Angew Chem Int Ed Engl. 1983;22:414–416.
    1. Unimolecular pathway supported experimentally by double crossover studies: Grotjahn DB, Zeng X, Cooksy AL. J Am Chem Soc. 2006;128:2798–2799.

    1. Bimolecular pathway supported by computational studies: Wakatsuki Y, Koga N, Werner H, Morokuma K. J Am Chem Soc. 1997;119:360–366.

Publication types

LinkOut - more resources