Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Jan;32(1):56-106.
doi: 10.1111/j.1574-6976.2007.00093.x.

Coenzyme A biosynthesis: an antimicrobial drug target

Affiliations
Free article
Review

Coenzyme A biosynthesis: an antimicrobial drug target

Christina Spry et al. FEMS Microbiol Rev. 2008 Jan.
Free article

Abstract

Pantothenic acid, a precursor of coenzyme A (CoA), is essential for the growth of pathogenic microorganisms. Since the structure of pantothenic acid was determined, many analogues of this essential metabolite have been prepared. Several have been demonstrated to exert an antimicrobial effect against a range of microorganisms by inhibiting the utilization of pantothenic acid, validating pantothenic acid utilization as a potential novel antimicrobial drug target. This review commences with an overview of the mechanisms by which various microorganisms acquire the pantothenic acid they require for growth, and the universal CoA biosynthesis pathway by which pantothenic acid is converted into CoA. A detailed survey of studies that have investigated the inhibitory activity of analogues of pantothenic acid and other precursors of CoA follows. The potential of inhibitors of both pantothenic acid utilization and biosynthesis as novel antibacterial, antifungal and antimalarial agents is discussed, focusing on inhibitors and substrates of pantothenate kinase, the enzyme catalysing the rate-limiting step of CoA biosynthesis in many organisms. The best strategies are considered for identifying inhibitors of pantothenic acid utilization and biosynthesis that are potent and selective inhibitors of microbial growth and that may be suitable for use as chemotherapeutic agents in humans.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources