Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Mar 7;283(10):6272-80.
doi: 10.1074/jbc.M706386200. Epub 2008 Jan 3.

Stimulus-specific modulation of the cation channel TRPV4 by PACSIN 3

Affiliations
Free article

Stimulus-specific modulation of the cation channel TRPV4 by PACSIN 3

Dieter D'hoedt et al. J Biol Chem. .
Free article

Abstract

TRPV4, a member of the vanilloid subfamily of the transient receptor potential (TRP) channels, is activated by a variety of stimuli, including cell swelling, moderate heat, and chemical compounds such as synthetic 4alpha-phorbol esters. TRPV4 displays a widespread expression in various cells and tissues and has been implicated in diverse physiological processes, including osmotic homeostasis, thermo- and mechanosensation, vasorelaxation, tuning of neuronal excitability, and bladder voiding. The mechanisms that regulate TRPV4 in these different physiological settings are currently poorly understood. We have recently shown that the relative amount of TRPV4 in the plasma membrane is enhanced by interaction with the SH3 domain of PACSIN 3, a member of the PACSIN family of proteins involved in synaptic vesicular membrane trafficking and endocytosis. Here we demonstrate that PACSIN 3 strongly inhibits the basal activity of TRPV4 and its activation by cell swelling and heat, while leaving channel gating induced by the synthetic ligand 4alpha-phorbol 12,13-didecanoate unaffected. A single proline mutation in the SH3 domain of PACSIN 3 abolishes its inhibitory effect on TRPV4, indicating that PACSIN 3 must bind to the channel to modulate its function. In line herewith, mutations at specific proline residues in the N terminus of TRPV4 abolish binding of PACSIN 3 and render the channel insensitive to PACSIN 3-induced inhibition. Taken together, these data suggest that PACSIN 3 acts as an auxiliary protein of TRPV4 channel that not only affects the channel's subcellular localization but also modulates its function in a stimulus-specific manner.

PubMed Disclaimer

Publication types

MeSH terms