Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2008 Jan;85(1):26-36.
doi: 10.1097/OPX.0b013e31815ed6fd.

Traffic gap judgment in people with significant peripheral field loss

Affiliations
Comparative Study

Traffic gap judgment in people with significant peripheral field loss

Allen M Y Cheong et al. Optom Vis Sci. 2008 Jan.

Abstract

Purpose: Subjects with significant peripheral field loss (PFL) self report difficulty in street crossing. In this study, we compared the traffic gap judgment ability of fully sighted and PFL subjects to determine whether accuracy in identifying crossable gaps was adversely affected because of field loss. Moreover, we explored the contribution of visual and nonvisual factors to traffic gap judgment ability.

Methods: Eight subjects with significant PFL as a result of advanced retinitis pigmentosa or glaucoma with binocular visual field <20 degrees and five age-matched normals (NV) were recruited. All subjects were required to judge when they perceived it was safe to cross at a 2-way 4-lane street while they stood on the curb. Eye movements were recorded by an eye tracker as the subjects performed the decision task. Movies of the eye-on-scene were made offline and fixation patterns were classified into either relevant or irrelevant. Subjects' street-crossing behavior, habitual approach to street crossing, and perceived difficulties were assessed.

Results: Compared with normal vision (NV) subjects, the PFL subjects identified 12% fewer crossable gaps while making 23% more errors by identifying a gap as crossable when it was too short (p < 0.05). The differences in traffic gap judgment ability of the PFL subjects might be explained by the significantly smaller fixation area (p = 0.006) and fewer fixations distributed to the relevant tasks (p = 0.001). The subjects' habitual approach to street crossing and perceived difficulties in street crossing (r > 0.60) were significantly correlated with traffic gap judgment performance.

Conclusions: As a consequence of significant field loss, limited visual information about the traffic environment can be acquired, resulting in significantly reduced performance in judging safe crossable gaps. This poor traffic gap judgment ability in the PFL subjects raises important concerns for their safety when attempting to cross the street.

PubMed Disclaimer

Publication types

LinkOut - more resources