Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 May;34(4):653-60.
doi: 10.1007/s00726-007-0018-1. Epub 2008 Jan 4.

Genetic programming for creating Chou's pseudo amino acid based features for submitochondria localization

Affiliations

Genetic programming for creating Chou's pseudo amino acid based features for submitochondria localization

Loris Nanni et al. Amino Acids. 2008 May.

Abstract

Given a protein that is localized in the mitochondria it is very important to know the submitochondria localization of that protein to understand its function. In this work, we propose a submitochondria localizer whose feature extraction method is based on the Chou's pseudo-amino acid composition. The pseudo-amino acid based features are obtained by combining pseudo-amino acid compositions with hundreds of amino-acid indices and amino-acid substitution matrices, then from this huge set of features a small set of 15 "artificial" features is created. The feature creation is performed by genetic programming combining one or more "original" features by means of some mathematical operators. Finally, the set of combined features are used to train a radial basis function support vector machine. This method is named GP-Loc. Moreover, we also propose a very few parameterized method, named ALL-Loc, where all the "original" features are used to train a linear support vector machine. The overall prediction accuracy obtained by GP-Loc is 89% when the jackknife cross-validation is used, this result outperforms the performance obtained in the literature (85.2%) using the same dataset. While the overall prediction accuracy obtained by ALL-Loc is 83.9%.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources