Formal analysis of resonance entrainment by central pattern generator
- PMID: 18175118
- DOI: 10.1007/s00285-007-0151-1
Formal analysis of resonance entrainment by central pattern generator
Abstract
The neuronal circuit controlling the rhythmic movements in animal locomotion is called the central pattern generator (CPG). The biological control mechanism appears to exploit mechanical resonance to achieve efficient locomotion. The objective of this paper is to reveal the fundamental mechanism underlying entrainment of CPGs to resonance through sensory feedback. To uncover the essential principle, we consider the simplest setting where a pendulum is driven by the reciprocal inhibition oscillator. Existence and properties of stable oscillations are examined by the harmonic balance method, which enables approximate but insightful analysis. In particular, analytical conditions are obtained under which harmonic balance predicts existence of an oscillation at a frequency near the resonance frequency. Our result reveals that the resonance entrainment can be maintained robustly against parameter perturbations through two distinct mechanisms: negative integral feedback and positive rate feedback.
Similar articles
-
Sensory feedback mechanism underlying entrainment of central pattern generator to mechanical resonance.Biol Cybern. 2006 Apr;94(4):245-61. doi: 10.1007/s00422-005-0047-3. Epub 2006 Jan 10. Biol Cybern. 2006. PMID: 16404611
-
Computer simulation study on central pattern generator: from biology to engineering.Int J Neural Syst. 2006 Dec;16(6):405-22. doi: 10.1142/S0129065706000810. Int J Neural Syst. 2006. PMID: 17285687
-
Sensory feedback in a half-center oscillator model.IEEE Trans Biomed Eng. 2007 Feb;54(2):193-204. doi: 10.1109/TBME.2006.886868. IEEE Trans Biomed Eng. 2007. PMID: 17278576
-
Oscillatory neural networks.Annu Rev Physiol. 1985;47:29-48. doi: 10.1146/annurev.ph.47.030185.000333. Annu Rev Physiol. 1985. PMID: 2986532 Review.
-
Central pattern generators for locomotion control in animals and robots: a review.Neural Netw. 2008 May;21(4):642-53. doi: 10.1016/j.neunet.2008.03.014. Epub 2008 May 14. Neural Netw. 2008. PMID: 18555958 Review.
Cited by
-
Time flies when you are in a groove: using entrainment to mechanical resonance to teach a desired movement distorts the perception of the movement's timing.Exp Brain Res. 2014 Mar;232(3):1057-70. doi: 10.1007/s00221-013-3819-3. Epub 2014 Jan 8. Exp Brain Res. 2014. PMID: 24398898 Clinical Trial.
-
Vocal development through morphological computation.PLoS Biol. 2018 Feb 20;16(2):e2003933. doi: 10.1371/journal.pbio.2003933. eCollection 2018 Feb. PLoS Biol. 2018. PMID: 29462148 Free PMC article.
-
Spikes alone do not behavior make: why neuroscience needs biomechanics.Curr Opin Neurobiol. 2011 Oct;21(5):816-22. doi: 10.1016/j.conb.2011.05.017. Epub 2011 Jun 15. Curr Opin Neurobiol. 2011. PMID: 21683575 Free PMC article. Review.
-
Multivariable harmonic balance analysis of the neuronal oscillator for leech swimming.J Comput Neurosci. 2008 Dec;25(3):583-606. doi: 10.1007/s10827-008-0105-7. Epub 2008 Jul 29. J Comput Neurosci. 2008. PMID: 18663565
-
Using computational and mechanical models to study animal locomotion.Integr Comp Biol. 2012 Nov;52(5):553-75. doi: 10.1093/icb/ics115. Epub 2012 Sep 16. Integr Comp Biol. 2012. PMID: 22988026 Free PMC article.
References
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources