Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007;8(12):234.
doi: 10.1186/gb-2007-8-12-234.

The reticulons: a family of proteins with diverse functions

Affiliations
Review

The reticulons: a family of proteins with diverse functions

Yvonne S Yang et al. Genome Biol. 2007.

Abstract

The reticulon family is a large and diverse group of membrane-associated proteins found throughout the eukaryotic kingdom. All of its members contain a carboxy-terminal reticulon homology domain that consists of two hydrophobic regions flanking a hydrophilic loop of 60-70 amino acids, but reticulon amino-terminal domains display little or no similarity to each other. Reticulons principally localize to the endoplasmic reticulum, and there is evidence that they influence endoplasmic reticulum-Golgi trafficking, vesicle formation and membrane morphogenesis. However, mammalian reticulons have also been found on the cell surface and mammalian reticulon 4 expressed on the surface of oligodendrocytes is an inhibitor of axon growth both in culture and in vivo. There is also growing evidence that reticulons may be important in neurodegenerative diseases such as Alzheimer's disease and amyotrophic lateral sclerosis. The diversity of structure, topology, localization and expression patterns of reticulons is reflected in their multiple, diverse functions in the cell.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Phylogenetic analysis of the reticulon homology domains (RHDs) of selected RTNs and RTNLPs. Alignments were created using the ClustalW2 program [99] and the tree was generated with Phylo_win software [100]. Bootstrap numbers are shown; the number of repetitions was 1,000. The tree was generated using the maximum likelihood method. GenBank accession numbers are as follows: H. sapiens RTN1A, NP_066959; H. sapiens RTN2A, NP_005610; H. sapiens RTN3A, NP_006045; H. sapiens RTN4A, NP_065393; M. musculus RTN1A, NP_703187; M. musculus RTN2B, NP_038676; M. musculus RTN3A, NP_001003934; M. musculus RTN4A, NP_918943; G. gallus RTN4, NP_989697; X. laevis RTN2A, NP_001089014; X. laevis RTN4, NP_001083238; D. rerio RTN4, NP_001018620; D. melanogaster Rtnl1A, NP_787987; C. elegans RET-1, NP_506656; S. cerevisiae RTNLA, NP_010077; A. thaliana RTNLB3, NP_176592.
Figure 2
Figure 2
The structure and membrane topology of reticulons. (a) Structure of reticulon proteins. Numbers refer to the exons that encode the protein regions. Black ovals represent hydrophobic regions. GenBank accession numbers are as in Figure 1. (b) Possible topologies of reticulon proteins in membranes. Although eight or more conformations are possible, only those for which evidence exists are depicted. Different topologies in different cell types and different membranes may enable reticulons to carry out diverse roles in the cell.
Figure 3
Figure 3
The expression and function of reticulons. (a) Myc-tagged reticulon constructs transfected into COS-7 cells show a reticular expression pattern. Scale bar, 70 μm. (b) Proteins known to interact with ER-associated and intracellular reticulons and their possible intracellular roles. Some classes of proteins may overlap in their cellular functions.
Figure 4
Figure 4
Interaction of Nogo-A with Nogo receptor. The interaction of Nogo-A (RTN4A) on oligodendrocytes and the Nogo receptor (NogoR) on neurons results in inhibition of axon regeneration after injury via Rho signaling [17,23,55,59,61-63,79]. The different regions of Nogo-A are colored as follows: red, 66-loop (Nogo66); green, Nogo-A-24; blue, Δ20. NogoR is in orange. The 66-loop interacts with NogoR to mediate growth-cone collapse and neurite outgrowth in vitro and to inhibit axon regeneration after injury [21,23,25,53,56,58,60,62]. The amino-terminal region Nogo-A-24 increases the binding affinity of Nogo-A to NogoR and also binds NogoR directly [15]. The amino-terminal region Δ20 can mediate fibroblast and growth-cone collapse independently of NogoR [16]. Some known co-receptors and signal transducers are listed beside the yellow symbol and are described in more detail in Table 1.

Similar articles

Cited by

References

    1. Oertle T, Klinger M, Stuermer CA, Schwab ME. A reticular rhapsody: phylogenic evolution and nomenclature of the RTN/Nogo gene family. FASEB J. 2003;17:1238–1247. doi: 10.1096/fj.02-1166hyp. - DOI - PubMed
    1. Nziengui H, Bouhidel K, Pillon D, Der C, Marty F, Schoefs B. Reticulon-like proteins in Arabidopsis thaliana: structural organization and ER localization. FEBS Lett. 2007;581:3356–3362. doi: 10.1016/j.febslet.2007.06.032. - DOI - PubMed
    1. Wakefield S, Tear G. The Drosophila reticulon, Rtnl-1, has multiple differentially expressed isoforms that are associated with a sub-compartment of the endoplasmic reticulum. Cell Mol Life Sci. 2006;63:2027–2038. doi: 10.1007/s00018-006-6142-3. - DOI - PMC - PubMed
    1. Diekmann H, Klinger M, Oertle T, Heinz D, Pogoda HM, Schwab ME, Stuermer CA. Analysis of the reticulon gene family demonstrates the absence of the neurite growth inhibitor Nogo-A in fish. Mol Biol Evol. 2005;22:1635–1648. doi: 10.1093/molbev/msi158. - DOI - PubMed
    1. Moreira EF, Jaworski CJ, Rodriguez IR. Cloning of a novel member of the reticulon gene family (RTN3): gene structure and chromosomal localization to 11q13. Genomics. 1999;58:73–81. doi: 10.1006/geno.1999.5807. - DOI - PubMed

Publication types

LinkOut - more resources