Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Feb 22;376(3):634-44.
doi: 10.1016/j.jmb.2007.12.019. Epub 2007 Dec 15.

The archaeal XPB protein is a ssDNA-dependent ATPase with a novel partner

Affiliations

The archaeal XPB protein is a ssDNA-dependent ATPase with a novel partner

Jodi D Richards et al. J Mol Biol. .

Abstract

XPB is a superfamily 2 helicase with a 3'-5' polarity. In eukaryotes, XPB is an integral subunit of the transcription factor TFIIH, which plays a dual role in DNA opening at RNA polymerase II promoters and in establishing the repair bubble around a DNA lesion in nucleotide excision repair. Eukaryotic XPB has only very limited helicase activity in vitro and may function as a DNA-dependent molecular switch to catalyse local distortion of DNA in transcription and repair. Most archaea have one or two homologues of the XPB protein with a presumed role in DNA repair, but only one other subunit of the TFIIH complex, the 5'-3' helicase XPD, has been identified in archaea. Here we report the biochemical characterisation of the two homologous XPB proteins from the crenarchaeon Sulfolobus solfataricus. Although both proteins are single-stranded-DNA-stimulated ATPases, neither displays any helicase activity in vitro, consistent with recent studies of eukaryotic XPB. In almost all archaeal genomes, the xpb gene lies adjacent to a conserved partner gene, and we demonstrate that these two gene products form a physical interaction in vitro. We propose the name Bax1 (Binds archaeal XPB) for this protein, which has a predicted endonuclease domain. XPB and Bax1 may collaborate in processing nucleic acid in an archaeal-specific DNA repair pathway.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources