Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jul;15(5):869-74.
doi: 10.1016/j.ultsonch.2007.10.012. Epub 2007 Dec 5.

Degradation of dissolved diazinon pesticide in water using the high frequency of ultrasound wave

Affiliations
Free article

Degradation of dissolved diazinon pesticide in water using the high frequency of ultrasound wave

Mohammed A Matouq et al. Ultrason Sonochem. 2008 Jul.
Free article

Abstract

This article aims to apply the ultrasound technique in the field of clean technology to protect environment. The principle of sonochemistry is conducted here to degrade pesticides in simulated industrial wastewater resulted from a factory manufacturing pesticides namely diazinon. Diazinon pesticide selected in this study for degradation under high frequency ultrasound wave. Three different initial concentrations of diazinon (800, 1200, and 1800 ppm), at different solution volumes were investigated in to degrade dissolved diazinon in water. Ultrasound device with 1.7 MHz, and 0.044 cm diameter, was used to study the degradation process. It is found that as the concentration of diazinon increased, the degradation is also increasing, and when the solution volume increases, the ability to degraded pesticides decreases. The experimental results showed an optimum condition achieved for degradation of diazinon at 1200 ppm as initial concentration and 50 ml solution volume. Kinetic modeling applied for the obtained results showed that the degradation of diazinon by high ultrasound frequency wave followed a pseudo-first-order model with apparent rate constant of around of 0.01 s(-1).

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources