Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 May;4(3):569-76.
doi: 10.1016/j.actbio.2007.11.005. Epub 2007 Nov 24.

Novel sphene coatings on Ti-6Al-4V for orthopedic implants using sol-gel method

Affiliations

Novel sphene coatings on Ti-6Al-4V for orthopedic implants using sol-gel method

Chengtie Wu et al. Acta Biomater. 2008 May.

Abstract

Hydroxyapatite (HAp) is commonly used to coat titanium alloys (Ti-6Al-4V) for orthopedic implants. However, their poor adhesion strength and insufficient long-term stability limit their application. Novel sphene (CaTiSiO5) ceramics possess excellent chemical stability and cytocompatibility. The aim of this study is to use the novel sphene ceramics as coatings for Ti-6Al-4V. The sol-gel method was used to produce the coatings and the thermal properties, phase composition, microstructure, thickness, surface roughness and adhesion strength of sphene coatings were analyzed by differential thermal analysis-thermal gravity (DTA-TG), X-ray diffraction (XRD), scanning electron microscopy (SEM), atom force microscopy (AFM) and scratch test, respectively. DTA analysis confirmed that the temperature of the sphene phase formation is 875 degrees C and XRD analysis indicated pure sphene coatings were obtained. A uniform structure of the sphene coating was found across the Ti-6Al-4V surface, with a thickness and surface roughness of the coating of about 0.5-1 microm and 0.38 microm, respectively. Sphene-coated Ti-6Al-4V possessed a significantly improved adhesion strength compared to that for HAp coating and their chemical stability was evaluated by testing the profile element distribution and the dissolution kinetics of calcium (Ca) ions after soaking the sphene-coated Ti-6Al-4V in Tris-HCl solution. Sphene coatings had a significantly improved chemical stability compared to the HAp coatings. A layer of apatite formed on the sphene-coated Ti-6Al-4V after they were soaked in simulated body fluids (SBF). Our results indicate that sol-gel coating of novel sphene onto Ti-6Al-4V possessed improved adhesion strength and chemical stability, compared to HAp-coated Ti-6Al-4V prepared under the same conditions, suggesting their potential application as coatings for orthopedic implants.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources