Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007;58(15-16):4225-33.
doi: 10.1093/jxb/erm279.

Maize nitrilases have a dual role in auxin homeostasis and beta-cyanoalanine hydrolysis

Affiliations

Maize nitrilases have a dual role in auxin homeostasis and beta-cyanoalanine hydrolysis

Verena Kriechbaumer et al. J Exp Bot. 2007.

Abstract

The auxin indole-3-acetic acid (IAA), which is essential for plant growth and development, is suggested to be synthesized via several redundant pathways. In maize (Zea mays), the nitrilase ZmNIT2 is expressed in auxin-synthesizing tissues and efficiently hydrolyses indole-3-acetonitrile to IAA. Zmnit2 transposon insertion mutants were compromised in root growth in young seedlings and sensitivity to indole-3-acetonitrile, and accumulated lower quantities of IAA conjugates in kernels and root tips, suggesting a substantial contribution of ZmNIT2 to total IAA biosynthesis in maize. An additional enzymatic function, turnover of beta-cyanoalanine, is acquired when ZmNIT2 forms heteromers with the homologue ZmNIT1. In plants carrying an insertion mutation in either nitrilase gene this activity was strongly reduced. A dual role for ZmNIT2 in auxin biosynthesis and in cyanide detoxification as a heteromer with ZmNIT1 is therefore proposed.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources