Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Nov 30:53 Suppl:OL1010-7.

Oxidative stress as a signal to up-regulate gamma-cystathionase in the fetal-to-neonatal transition in rats

Affiliations
  • PMID: 18184479

Oxidative stress as a signal to up-regulate gamma-cystathionase in the fetal-to-neonatal transition in rats

J A Martín et al. Cell Mol Biol (Noisy-le-grand). .

Abstract

Hepatic gamma-cystathionase, a rate-limiting enzyme for the synthesis of L-cysteine from L-methionine in the trans-sulphuration pathway, exhibits significantly higher activity in the newly born infant as compared to the fetus. The aim of this work was: 1) To determine whether the increase in gamma-cystathionase activity occurring in the fetal-to-neonatal transition is due to up-regulation of its mRNA and protein, 2) To elucidate the mechanisms responsible for this increase in gamma-cystathionase activity. Our results show that expression of gamma-cystathionase at both the mRNA and protein levels was higher in newborn than in fetal liver. gamma-Cystathionase activity in fetal hepatocytes in vitro increased when incubated with tert-butyl-hydroperoxide at low concentration (0.01 mM). Hence, moderate oxidative stress would act as a signal to up-regulate gamma-cystathionase in the fetal to neonatal transition. Stress hormones, such as phenylephrine or glucagon also increased gamma-cystathionase activity in fetal hepatocytes. We also report a competitive inhibition of purified gamma-cystathionase by L-cysteine, which would help to maintain physiological low L-cysteine levels in hepatocytes. In conclusion, our results show that increased hepatic gamma-cystathionase activity in the fetal-to-neonatal transition is due to up-regulation of its gene expression mediated by stress hormones together with the physiological oxidative stress that occurs at birth.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms