Silicon nanowires as efficient thermoelectric materials
- PMID: 18185583
- DOI: 10.1038/nature06458
Silicon nanowires as efficient thermoelectric materials
Abstract
Thermoelectric materials interconvert thermal gradients and electric fields for power generation or for refrigeration. Thermoelectrics currently find only niche applications because of their limited efficiency, which is measured by the dimensionless parameter ZT-a function of the Seebeck coefficient or thermoelectric power, and of the electrical and thermal conductivities. Maximizing ZT is challenging because optimizing one physical parameter often adversely affects another. Several groups have achieved significant improvements in ZT through multi-component nanostructured thermoelectrics, such as Bi(2)Te(3)/Sb(2)Te(3) thin-film superlattices, or embedded PbSeTe quantum dot superlattices. Here we report efficient thermoelectric performance from the single-component system of silicon nanowires for cross-sectional areas of 10 nm x 20 nm and 20 nm x 20 nm. By varying the nanowire size and impurity doping levels, ZT values representing an approximately 100-fold improvement over bulk Si are achieved over a broad temperature range, including ZT approximately 1 at 200 K. Independent measurements of the Seebeck coefficient, the electrical conductivity and the thermal conductivity, combined with theory, indicate that the improved efficiency originates from phonon effects. These results are expected to apply to other classes of semiconductor nanomaterials.
Comment in
-
Materials science. Desperately seeking silicon.Nature. 2008 Jan 10;451(7175):132-3. doi: 10.1038/451132a. Nature. 2008. PMID: 18185573 No abstract available.
Similar articles
-
Enhanced thermoelectric performance of rough silicon nanowires.Nature. 2008 Jan 10;451(7175):163-7. doi: 10.1038/nature06381. Nature. 2008. PMID: 18185582
-
Semiconductor nanocrystals functionalized with antimony telluride zintl ions for nanostructured thermoelectrics.J Am Chem Soc. 2010 May 19;132(19):6686-95. doi: 10.1021/ja909591x. J Am Chem Soc. 2010. PMID: 20423085
-
Thermoelectric properties of individual single-crystalline PbTe nanowires grown by a vapor transport method.Nanotechnology. 2011 Jul 22;22(29):295707. doi: 10.1088/0957-4484/22/29/295707. Epub 2011 Jun 16. Nanotechnology. 2011. PMID: 21677373
-
Insights into One-Dimensional Thermoelectric Materials: A Concise Review of Nanowires and Nanotubes.Nanomaterials (Basel). 2024 Jul 29;14(15):1272. doi: 10.3390/nano14151272. Nanomaterials (Basel). 2024. PMID: 39120377 Free PMC article. Review.
-
Advances in Atomic Layer Deposition (ALD) Nanolaminate Synthesis of Thermoelectric Films in Porous Templates for Improved Seebeck Coefficient.Materials (Basel). 2020 Mar 12;13(6):1283. doi: 10.3390/ma13061283. Materials (Basel). 2020. PMID: 32178403 Free PMC article. Review.
Cited by
-
Transitioning from Si to SiGe Nanowires as Thermoelectric Material in Silicon-Based Microgenerators.Nanomaterials (Basel). 2021 Feb 18;11(2):517. doi: 10.3390/nano11020517. Nanomaterials (Basel). 2021. PMID: 33670539 Free PMC article.
-
Length dependent thermal conductivity measurements yield phonon mean free path spectra in nanostructures.Sci Rep. 2015 Mar 13;5:9121. doi: 10.1038/srep09121. Sci Rep. 2015. PMID: 25764977 Free PMC article.
-
Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum.Nat Commun. 2016 Sep 29;7:12892. doi: 10.1038/ncomms12892. Nat Commun. 2016. PMID: 27682836 Free PMC article.
-
Tuning the Anisotropic Thermal Transport in {110}-Silicon Membranes with Surface Resonances.Nanomaterials (Basel). 2021 Dec 30;12(1):123. doi: 10.3390/nano12010123. Nanomaterials (Basel). 2021. PMID: 35010074 Free PMC article.
-
Heavily Boron-Doped Silicon Layer for the Fabrication of Nanoscale Thermoelectric Devices.Nanomaterials (Basel). 2018 Jan 30;8(2):77. doi: 10.3390/nano8020077. Nanomaterials (Basel). 2018. PMID: 29385759 Free PMC article.
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources