Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jun;14(6):742-54.
doi: 10.1002/psc.992.

Kissper, a kiwi fruit peptide with channel-like activity: structural and functional features

Affiliations

Kissper, a kiwi fruit peptide with channel-like activity: structural and functional features

M Antonietta Ciardiello et al. J Pept Sci. 2008 Jun.

Abstract

Kissper is a 39-residue peptide isolated from kiwi fruit (Actinidia deliciosa). Its primary structure, elucidated by direct protein sequencing, is identical to the N-terminal region of kiwellin, a recently reported kiwi fruit allergenic protein, suggesting that kissper derives from the in vivo processing of kiwellin. The peptide does not show high sequence identity with any other polypeptide of known function. However, it displays a pattern of cysteines similar, but not identical, to those observed in some plant and animal proteins, including toxins involved in defence mechanisms. A number of these proteins are also active on mammalian cells. Functional characterization of kissper showed pH-dependent and voltage-gated pore-forming activity, together with anion selectivity and channeling in model synthetic PLMs, made up of POPC and of DOPS:DOPE:POPC. A 2DNMR analysis indicates that in aqueous solution kissper has only short regions of regular secondary structure, without any evident similarity with other bioactive peptides. Comparative analysis of the structural and functional features suggests that kissper is a member of a new class of pore-forming peptides with potential effects on human health.

PubMed Disclaimer

Publication types

MeSH terms