Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Mar;42(3):476-82.
doi: 10.1016/j.bone.2007.12.001. Epub 2007 Dec 14.

The associations between mineral crystallinity and the mechanical properties of human cortical bone

Affiliations

The associations between mineral crystallinity and the mechanical properties of human cortical bone

Janardhan S Yerramshetty et al. Bone. 2008 Mar.

Abstract

It is well known that the amount of mineralization renders bone its stiffness. However, besides the mere amount of the mineral phase, size and shape of carbonated apatite crystals are postulated to affect the mechanical properties of bone tissue as predicted by composite mechanics models. Despite this predictive evidence, there is little experimental insight on the relation between the characteristics of mineral crystals and hard tissue mechanics. In this study, Raman spectroscopy was used to provide information on the crystallinity of bone's mineral phase, a parameter which is an overall indicator of mineral crystal size and stoichiometric perfection. Raman scans and mechanical tests (monotonic and fatigue; n=64 each) were performed on the anterior, medial, lateral and posterior quadrant sections of 16 human cadaveric femurs (52 y.o.-85 y.o.). The reported coefficient of determination values (R(2)) were adjusted for the effects of age to bring out the unbiased contribution of crystallinity. Crystallinity was able to explain 6.7% to 48.3% of the variation in monotonic mechanical properties. Results indicated that the tissue-level strength and stiffness increased with increasing crystallinity while the ductility reduced. Crystallinity explained 11.3% to 63.5% of the variation in fatigue properties. Moduli of specimens with greater crystallinity degraded at a slower rate and, also, they had longer fatigue lives. However, not every anatomical quadrant displayed these relationships. In conclusion, these results acknowledge crystal properties as an important bone quality factor and raise the possibility that aberrations in these properties may contribute to senile osteoporotic fractures.

PubMed Disclaimer

Publication types