Environmental epigenetics and asthma: current concepts and call for studies
- PMID: 18187692
- PMCID: PMC2267336
- DOI: 10.1164/rccm.200710-1511PP
Environmental epigenetics and asthma: current concepts and call for studies
Abstract
Recent studies suggest that epigenetic regulation (heritable changes in gene expression that occur in the absence of alterations in DNA sequences) may in part mediate the complex gene-by-environment interactions that can lead to asthma. The variable natural history of asthma (i.e., incidence and remission of symptoms) may be a result of epigenetic changes, such as DNA methylation, covalent histone modifications, microRNA changes, and chromatin alterations, after early or later environmental exposures. Findings from multiple epidemiologic and experimental studies indicate that asthma risk may be modified by epigenetic regulation. One study suggested that the transmission of asthma risk may occur across multiple generations. Experimental studies provide substantial in vitro data indicating that DNA methylation of genes critical to T-helper cell differentiation may induce polarization toward or away from an allergic phenotype. Despite this initial progress, fundamental questions remain that need to be addressed by well-designed research studies. Data generated from controlled experiments using in vivo models and/or clinical specimens collected after environmental exposure monitoring are limited. Importantly, cohort-driven epigenetic research has the potential to address key questions, such as those concerning the influence of timing of exposure, dose of exposure, diet, and ethnicity on susceptibility to asthma development. There is immense promise that the study of environmental epigenetics will help us understand a theoretically preventable environmental disease.
Figures
Comment in
-
Epigenetic studies should focus on specific cell types.Am J Respir Crit Care Med. 2008 Oct 15;178(8):882-3; author reply 883. doi: 10.1164/ajrccm.178.8.882a. Am J Respir Crit Care Med. 2008. PMID: 18832556 No abstract available.
References
-
- Los H, Postmus PE, Boomsma DI. Asthma genetics and intermediate phenotypes: a review from twin studies. Twin Res 2001;4:81–93. - PubMed
-
- Venn AJ, Lewis SA, Cooper M, Hubbard R, Britton J. Living near a main road and the risk of wheezing illness in children. Am J Respir Crit Care Med 2001;164:2177–2180. - PubMed
-
- Hoppin JA, Umbach DM, London SJ, Alavanja MCR, Sandler DP. Diesel exhaust, solvents, and other occupational exposures as risk factors for wheeze among farmers. Am J Respir Crit Care Med 2004;169:1308–1313. - PubMed
-
- Lau C, Rogers JM. Embryonic and fetal programming of physiological disorders in adulthood. Birth Defects Research C Embryo Today 2004;72:300–312. - PubMed
-
- Hales C, Barker D. The thrifty phenotype hypothesis. Br Med Bull 2001;60:5–20. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous