Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Feb;4(2):126-31.
doi: 10.1038/nchembio.64. Epub 2008 Jan 13.

Conformational cross-talk between alpha2A-adrenergic and mu-opioid receptors controls cell signaling

Affiliations

Conformational cross-talk between alpha2A-adrenergic and mu-opioid receptors controls cell signaling

Jean-Pierre Vilardaga et al. Nat Chem Biol. 2008 Feb.

Abstract

Morphine, a powerful analgesic, and norepinephrine, the principal neurotransmitter of sympathetic nerves, exert major inhibitory effects on both peripheral and brain neurons by activating distinct cell-surface G protein-coupled receptors-the mu-opioid receptor (MOR) and alpha2A-adrenergic receptor (alpha2A-AR), respectively. These receptors, either singly or as a heterodimer, activate common signal transduction pathways mediated through the inhibitory G proteins (G(i) and G(o)). Using fluorescence resonance energy transfer microscopy, we show that in the heterodimer, the MOR and alpha2A-AR communicate with each other through a cross-conformational switch that permits direct inhibition of one receptor by the other with subsecond kinetics. We discovered that morphine binding to the MOR triggers a conformational change in the norepinephrine-occupied alpha2A-AR that inhibits its signaling to G(i) and the downstream MAP kinase cascade. These data highlight a new mechanism in signal transduction whereby a G protein-coupled receptor heterodimer mediates conformational changes that propagate from one receptor to the other and cause the second receptor's rapid inactivation.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources