Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007:45:429-64.
doi: 10.1007/978-1-4020-6191-2_16.

Calcium misregulation and the pathogenesis of muscular dystrophy

Affiliations
Review

Calcium misregulation and the pathogenesis of muscular dystrophy

F W Hopf et al. Subcell Biochem. 2007.

Abstract

Although the exact nature of the relationship between calcium and the pathogenesis of Duchenne muscular dystrophy (DMD) is not fully understood, this is an important issue which has been addressed in several recent reviews (Alderton and Steinhardt, 2000a, Gailly, 2002, Allen et al., 2005). A key question when trying to understand the cellular basis of DMD is how the absence or low level of expression of dystrophin, a cytoskeletal protein, results in the slow but progressive necrosis of muscle fibres. Although loss of cytoskeletal and sarcolemmal integrity which results from the absence of dystrophin clearly plays a key role in the pathogenesis associated with DMD, a number of lines of evidence also establish a role for misregulation of calcium ions in the DMD pathology, particularly in the cytoplasmic space just under the sarcolemma. A number of calcium-permeable channels have been identified which can exhibit greater activity in dystrophic muscle cells, and exIsting evidence suggests that these may represent different variants of the same channel type (perhaps the transient receptor potential channel, TRPC). In addition, a prominent role for calcium-activated proteases in the DMD pathology has been established, as well as modulation of other intracellular regulatory proteins and signaling pathways. Whether dystrophin and its associated proteins have a direct role in the regulation of calcium ions, calcium channels or intracellular calcium stores, or indirectly alters calcium regulation through enhancement of membrane tearing, remains unclear. Here we focus on areas of consensus or divergence amongst the existing literature, and propose areas where future research would be especially valuable.

PubMed Disclaimer

MeSH terms

LinkOut - more resources