Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2007;27(3):221-32.
doi: 10.1615/critrevimmunol.v27.i3.30.

Natural and autoantibodies to human T-cell receptor Vbeta segments: potential roles in immunomodulation

Affiliations
Review

Natural and autoantibodies to human T-cell receptor Vbeta segments: potential roles in immunomodulation

Miranda K Adelman et al. Crit Rev Immunol. 2007.

Abstract

Although the manifestation of inflammatory autodestructive disease is the result of major immunological dysfunction, recent evidence indicates that the immune system attempts to compensate by the production of immunomodulatory autoantibodies. Healthy humans have low levels of naturally occurring autoantibodies directed against the first complementarity-determining region (CDR1) and third framework region (FR3) of their own T-cell receptor (TCR) Vbeta segments, but individuals suffering from rheumatoid arthritis (RA) or systemic lupus erythematosus (SLE) can have highly elevated levels of these autoantibodies. We cloned and characterized human anti-TCR monoclonal autoantibodies (mAAbs) from RA and SLE patients. Because of the cross-reactions between distinct CDR1 segments of human TCR Vbeta and corresponding murine homologs, it was possible to show that human mAAbs blocked the capacity of a murine TH1 cell line (DO11.10) to produce IL-2 in response to antigenic stimulation in vitro. These results support the hypothesis that autoantibodies against TCR Vbeta can shut down TH1-mediated inflammatory autodestructive reactions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources