Protein metabolism in slow- and fast-twitch skeletal muscle during turpentine-induced inflammation
- PMID: 18197871
- PMCID: PMC2525760
- DOI: 10.1111/j.1365-2613.2007.00553.x
Protein metabolism in slow- and fast-twitch skeletal muscle during turpentine-induced inflammation
Abstract
The aim of our study was to evaluate the differences in protein and amino acid metabolism after subcutaneous turpentine administration in the soleus muscle (SOL), predominantly composed of red fibres, and the extensor digitorum longus muscle (EDL) composed of white fibres. Young rats (40-60 g) were injected subcutaneously with 0.2 ml of turpentine oil/100 g body weight (inflammation) or with the same volume of saline solution (control). Twenty-four hours later SOL and EDL were dissected and incubated in modified Krebs-Heinseleit buffer to estimate total and myofibrillar proteolysis, chymotrypsin-like activity of proteasome (CHTLA), leucine oxidation, protein synthesis and amino acid release into the medium. The data obtained demonstrate that in intact rats, all parameters measured except protein synthesis are significantly higher in SOL than in EDL. In turpentine treated animals, CHTLA increased and protein synthesis decreased significantly more in EDL. Release of leucine was inhibited significantly more in SOL. We conclude that turpentine-induced inflammation affects more CHTLA, protein synthesis and leucine release in EDL compared to SOL.
Figures
References
-
- Anthony JC, Yoshizawa F, Anthony TG, Vary TC, Jefferson LS, Kimball SR. Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J. Nutr. 2000;130:2413–2419. - PubMed
-
- Baugh JM, Pilipenko EV. 20S proteasome differentially alters translation of different mRNAs via the cleavage of eIF4F and eIF3. Mol. Cell. 2004;16:575–586. - PubMed
-
- Bazel S, Andrejko KM, Chen J, Deutschman CS. Hepatic gene expression and cytokine responses to sterile inflammation: comparison with cecal ligation and puncture sepsis in the rat. Shock. 1999;11:347–355. - PubMed
-
- Birch HE, Schreiber G. Transcriptional regulation of plasma protein synthesis during inflammation. J. Biol. Chem. 1986;261:8077–8080. - PubMed
-
- Chai J, Wu Y, Sheng ZZ. The relationship between skeletal muscle proteolysis and ubiquitin - proteasome proteolytic pathway in burned rats. Burns. 2002;28:527–533. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
