Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Apr;99(4):1628-42.
doi: 10.1152/jn.01228.2007. Epub 2008 Jan 16.

Sound localization deficits during reversible deactivation of primary auditory cortex and/or the dorsal zone

Affiliations
Free article

Sound localization deficits during reversible deactivation of primary auditory cortex and/or the dorsal zone

Shveta Malhotra et al. J Neurophysiol. 2008 Apr.
Free article

Abstract

We examined the contributions of primary auditory cortex (A1) and the dorsal zone of auditory cortex (DZ) to sound localization behavior during separate and combined unilateral and bilateral deactivation. From a central visual fixation point, cats learned to make an orienting response (head movement and approach) to a 100-ms broadband noise burst emitted from a central speaker or one of 12 peripheral sites (located in front of the animal, from left 90 degrees to right 90 degrees, at 15 degrees intervals) along the horizontal plane. Following training, each cat was implanted with separate cryoloops over A1 and DZ bilaterally. Unilateral deactivation of A1 or DZ or simultaneous unilateral deactivation of A1 and DZ (A1/DZ) resulted in spatial localization deficits confined to the contralateral hemifield, whereas sound localization to positions in the ipsilateral hemifield remained unaffected. Simultaneous bilateral deactivation of both A1 and DZ resulted in sound localization performance dropping from near-perfect to chance (7.7% correct) across the entire field. Errors made during bilateral deactivation of A1/DZ tended to be confined to the same hemifield as the target. However, unlike the profound sound localization deficit that occurs when A1 and DZ are deactivated together, deactivation of either A1 or DZ alone produced partial and field-specific deficits. For A1, bilateral deactivation resulted in higher error rates (performance dropping to approximately 45%) but relatively small errors (mostly within 30 degrees of the target). In contrast, bilateral deactivation of DZ produced somewhat fewer errors (performance dropping to only approximately 60% correct), but the errors tended to be larger, often into the incorrect hemifield. Therefore individual deactivation of either A1 or DZ produced specific and unique sound localization deficits. The results of the present study reveal that DZ plays a role in sound localization. Along with previous anatomical and physiological data, these behavioral data support the view that A1 and DZ are distinct cortical areas. Finally, the findings that deactivation of either A1 or DZ alone produces partial sound localization deficits, whereas deactivation of either posterior auditory field (PAF) or anterior ectosylvian sulcus (AES) produces profound sound localization deficits, suggests that PAF and AES make more significant contributions to sound localization than either A1 or DZ.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources