Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Dec 1;87(3):760-9.
doi: 10.1002/jbm.a.31831.

Evaluation of the biocompatibility of calcium phosphate cement/PLGA microparticle composites

Affiliations

Evaluation of the biocompatibility of calcium phosphate cement/PLGA microparticle composites

Dennis P Link et al. J Biomed Mater Res A. .

Abstract

In this study, the biocompatibility of a calcium phosphate (CaP) cement incorporating poly (D,L-lactic-co-glycolic acid) (PLGA) microparticles was evaluated in a subcutaneous implantation model in rats. Short-term biocompatibility was assessed using pure CaP discs and CaP discs incorporating PLGA microparticles (20% w/w) with and without preincubation in water. Long-term biocompatibility was assessed using CaP discs incorporating varying amounts (5, 10, or 20% w/w) and diameter sizes (small, 0-50 mum; medium, 51-100 mum, or large, 101-200 mum) of PLGA microparticles. The short-term biocompatibility results showed a mild tissue response for all implant formulations, irrespective of disc preincubation, during the early implantation periods up to 12 days. Quantitative histological evaluation revealed that the different implant formulations induced the formation of similar fibrous tissue capsules and interfaces. The results concerning long-term biocompatibility showed that all implants were surrounded by a thin connective tissue capsule (<10 layers of fibroblasts). Additionally, no significant differences in capsule and interface scores were observed between the different implant formulations. The implants containing 20% PLGA with medium- and large-sized microparticles showed fibrous tissue ingrowth throughout the implants, indicating PLGA degradation and interconnectivity of the pores. The results demonstrate that CaP/PLGA composites evoke a minimal inflammatory response. The implants containing 20% PLGA with medium- and large-sized microparticles showed fibrous tissue ingrowth after 12- and 24-weeks indicating PLGA degradation and interconnectivity of the pores. Therefore, CaP/PLGA composites can be regarded as biocompatible biomaterials with potential for bone tissue engineering and advantageous possibilities of the microparticles regarding material porosity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources