Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jul;14(7):786-96.
doi: 10.1002/psc.999.

Improving the affinity of antigens for mutated antibodies by use of statistical molecular design

Affiliations

Improving the affinity of antigens for mutated antibodies by use of statistical molecular design

Ilona Mandrika et al. J Pept Sci. 2008 Jul.

Abstract

We demonstrate the use of statistical molecular design (SMD) in the selection of peptide libraries aimed to systematically investigate antigen-antibody binding spaces. Earlier, we derived two novel antibodies by mutating the complementarity-determining region of the anti-p24 (HIV-1) single chain Fv antibody, CB4-1 that had lost their affinity for a p24 epitope-homologous peptide by 8- and 60-fold. The present study was devoted to explore how peptide libraries can be designed under experimental design criteria for effective screening of peptide antigens. Several small peptide-antigen libraries were selected using SMD principles and their activities were evaluated by their binding to SPOT-synthesized peptide membranes and by fluorescence polarization (FP). The approach was able to reveal the most critical residues required for antigen binding, and finally to increase the binding activity by proper modifications of amino acids in the peptide antigen. A model of the active peptide binding pocket formed by the mutated scFv and the antigen was compatible with the information gained from the experimental data. Our results suggest that SMD approaches can be used to explore peptide antigen features essential for their interactions with antibodies.

PubMed Disclaimer

Similar articles

Cited by

Publication types