Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress
- PMID: 18202315
- PMCID: PMC3014059
- DOI: 10.1161/CIRCRESAHA.107.164970
Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress
Abstract
Air pollution is associated with significant adverse health effects, including increased cardiovascular morbidity and mortality. Exposure to particulate matter with an aerodynamic diameter of <2.5 microm (PM(2.5)) increases ischemic cardiovascular events and promotes atherosclerosis. Moreover, there is increasing evidence that the smallest pollutant particles pose the greatest danger because of their high content of organic chemicals and prooxidative potential. To test this hypothesis, we compared the proatherogenic effects of ambient particles of <0.18 microm (ultrafine particles) with particles of <2.5 microm in genetically susceptible (apolipoprotein E-deficient) mice. These animals were exposed to concentrated ultrafine particles, concentrated particles of <2.5 microm, or filtered air in a mobile animal facility close to a Los Angeles freeway. Ultrafine particle-exposed mice exhibited significantly larger early atherosclerotic lesions than mice exposed to PM(2.5) or filtered air. Exposure to ultrafine particles also resulted in an inhibition of the antiinflammatory capacity of plasma high-density lipoprotein and greater systemic oxidative stress as evidenced by a significant increase in hepatic malondialdehyde levels and upregulation of Nrf2-regulated antioxidant genes. We conclude that ultrafine particles concentrate the proatherogenic effects of ambient PM and may constitute a significant cardiovascular risk factor.
Figures







References
-
- Nel A. Atmosphere. Air pollution-related illness: effects of particles. Science. 2005;308:804–806. - PubMed
-
- Miller KA, Siscovick DS, Sheppard L, Shepherd K, Sullivan JH, Anderson GL, Kaufman JD. Long-term exposure to air pollution and incidence of cardiovascular events in women. N Engl J Med. 2007;356:447–458. - PubMed
-
- Utell MJ, Frampton MW. Acute health effects of ambient air pollution: the ultrafine particle hypothesis. J Aerosol Med. 2000;13:355–359. - PubMed
-
- Suwa T, Hogg JC, Quinlan KB, Ohgami A, Vincent R, van Eeden SF. Particulate air pollution induces progression of atherosclerosis. J Am Coll Cardiol. 2002;39:935–942. - PubMed
-
- Sun Q, Wang A, Jin X, Natanzon A, Duquaine D, Brook RD, Aguinaldo JG, Fayad ZA, Fuster V, Lippmann M, Chen LC, Rajagopalan S. Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model. JAMA. 2005;294:3003–3010. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical