Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Feb 14;112(6):1828-33.
doi: 10.1021/jp709621c. Epub 2008 Jan 19.

Spectroscopic studies on ligand-enzyme interactions: complexation of alpha-chymotrypsin with 4',6-diamidino-2-phenylindole (DAPI)

Affiliations

Spectroscopic studies on ligand-enzyme interactions: complexation of alpha-chymotrypsin with 4',6-diamidino-2-phenylindole (DAPI)

Debapriya Banerjee et al. J Phys Chem B. .

Abstract

In the present study, the interaction of two structurally related proteolytic enzymes trypsin and alpha-chymotrypsin (CHT) with 4',6-Diamidino-2-phenylindole (DAPI) has been addressed. The binding of DAPI to CHT has been characterized by steady-state and picosecond time-resolved spectroscopic techniques. Enzymatic activity of CHT and simultaneous binding of the well-known inhibitor proflavin (PF) in the presence of DAPI clearly rule out the possibility of DAPI binding at the catalytic site of the enzyme. The spectral overlap between the emission of DAPI and absorption of PF offers the opportunity to explore the binding site of DAPI using Förster resonance energy transfer (FRET). FRET studies between DAPI and PF indicate that DAPI is bound to CHT with its transition dipole nearly perpendicular to that of PF. Competitive binding of DAPI with another fluorescent probe 2,6-p-toluidinonaphthalene sulfonate (TNS), having a well-defined binding site, indicates that DAPI and TNS bind at the same hydrophobic site of the enzyme CHT. The difference in the interactions of two well-studied, structurally similar enzymes with the same molecule may find its application in the design of specific substrate mimics or inhibitors of the enzymes.

PubMed Disclaimer

Publication types

LinkOut - more resources