Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Feb;29(2):99-107.
doi: 10.1016/j.tips.2007.11.010. Epub 2008 Jan 18.

Activation of Kv7 (KCNQ) voltage-gated potassium channels by synthetic compounds

Affiliations
Review

Activation of Kv7 (KCNQ) voltage-gated potassium channels by synthetic compounds

Qiaojie Xiong et al. Trends Pharmacol Sci. 2008 Feb.

Abstract

Voltage-gated Kv7 (or KCNQ) channels play a pivotal role in controlling membrane excitability. Like typical voltage-gated ion channels, Kv7 channels undergo a closed-to-open transition by sensing changes in transmembrane potential, and thereby mediate inhibitory K(+) currents to reduce membrane excitability. Reduction of Kv7 channel activity as a result of genetic mutation is responsible for various human diseases due to membrane hyperexcitability, including epilepsy, arrhythmia and deafness. As a result, the discovery of small compounds that activate voltage-gated ion channels is an important strategy for clinical intervention in such disorders. Because ligand binding can induce a conformational change leading to subthreshold channel opening, there is considerable interest in understanding the molecular basis of these 'gain-of-function' molecules. Although small-molecule activators of cation channels are rare, several novel compounds that activate Kv7 voltage-gated channels have been identified. Recent advances in defining the activator-binding sites and in understanding their mechanism of action have begun to provide insight into the activation of voltage-gated channels by synthetic compounds.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms