Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008;21(1-3):183-92.
doi: 10.1159/000113760. Epub 2008 Jan 16.

TRPC6 contributes to the Ca(2+) leak of human erythrocytes

Affiliations

TRPC6 contributes to the Ca(2+) leak of human erythrocytes

Michael Foller et al. Cell Physiol Biochem. 2008.

Abstract

Human erythrocytes express cation channels which contribute to the background leak of Ca(2+), Na(+) and K(+). Excessive activation of these channels upon energy depletion, osmotic shock, Cl(-) depletion, or oxidative stress triggers suicidal death of erythrocytes (eryptosis), characterized by cell-shrinkage and exposure of phosphatidylserine at the cell surface. Eryptotic cells are supposed to be cleared from circulating blood. The present study aimed to identify the cation channels. RT-PCR revealed mRNA encoding the non-selective cation channel TRPC6 in erythroid progenitor cells. Western blotting indicated expression of TRPC6 protein in erythrocytes from man and wildtype mice but not from TRPC6(-/-) mice. According to flow-cytometry, Ca(2+) entry into human ghosts prepared by hemolysis in EGTA-buffered solution containing the Ca(2+) indicator Fluo3/AM was inhibited by the reducing agent dithiothreitol and the erythrocyte cation channel blockers ethylisopropylamiloride and amiloride. Loading of the ghosts with antibodies against TRPC6 or TRPC3/6/7 but neither with antibodies against TRPM2 or TRPC3 nor antibodies pre-adsorbed with the immunizing peptides inhibited ghost Ca(2+) entry. Moreover, free Ca(2+) concentration, cell-shrinkage, and phospholipid scrambling were significantly lower in Cl(-)-depleted TRPC6(-/-) erythrocytes than in wildtype mouse erythrocytes. In conclusion, human and mouse erythrocytes express TRPC6 cation channels which participate in cation leak and Ca(2+)-induced suicidal death.

PubMed Disclaimer

Publication types

LinkOut - more resources