Molecular dynamics simulation of ss-DNA translocation between copper nanoelectrodes incorporating electrode charge dynamics
- PMID: 18211061
- DOI: 10.1021/jp077483e
Molecular dynamics simulation of ss-DNA translocation between copper nanoelectrodes incorporating electrode charge dynamics
Abstract
Molecular dynamics simulations have been performed to study the translocation of single-stranded (ss)-DNA through the nanoscale gap between the nanoscale electrodes of a proposed genomic sequencing device. Using a fixed gap width between the electrodes and a small sample segment of ss-DNA as initial starting points in this project, the effect of applied electric fields on translocation velocity was studied. To describe the electrostatic interactions of the water, ions, and ss-DNA with the nanoscale electrodes, we applied the electrode charge dynamics (ECD) method. Through the density profile and comparison of translocation velocities to extrapolated experimental data, we found the ECD potential to be a better descriptor of the metal/nonmetal electrostatic interactions compared to the commonly used universal force field (UFF). Translocation velocities obtained using the ECD potential were consistent with simulated bulk data.
Similar articles
-
Electrophoresis of ssDNA through nanoelectrode gaps from molecular dynamics: impact of gap width and chain length.J Phys Chem B. 2008 Oct 9;112(40):12851-8. doi: 10.1021/jp802258v. Epub 2008 Sep 11. J Phys Chem B. 2008. PMID: 18783267
-
Molecular dynamics study on DNA oligonucleotide translocation through carbon nanotubes.J Chem Phys. 2008 Sep 28;129(12):125101. doi: 10.1063/1.2981798. J Chem Phys. 2008. PMID: 19045062
-
Development of a ReaxFF reactive force field for aqueous chloride and copper chloride.J Phys Chem A. 2010 Mar 18;114(10):3556-68. doi: 10.1021/jp9090415. J Phys Chem A. 2010. PMID: 20180586
-
Responsive polymer gels: double-stranded versus single-stranded DNA.J Phys Chem B. 2007 Sep 20;111(37):10886-96. doi: 10.1021/jp0713108. Epub 2007 Aug 30. J Phys Chem B. 2007. PMID: 17727281
-
Sequencing in nanofabricated arrays: a feasibility study.Electrophoresis. 1997 Jan;18(1):17-22. doi: 10.1002/elps.1150180105. Electrophoresis. 1997. PMID: 9059815 Review.
Cited by
-
A long DNA segment in a linear nanoscale Paul trap.Nanotechnology. 2010 Jan 8;21(1):015103. doi: 10.1088/0957-4484/21/1/015103. Epub 2009 Nov 30. Nanotechnology. 2010. PMID: 19946172 Free PMC article.
-
Physical model for recognition tunneling.Nanotechnology. 2015 Feb 27;26(8):084001. doi: 10.1088/0957-4484/26/8/084001. Epub 2015 Feb 3. Nanotechnology. 2015. PMID: 25650375 Free PMC article.
-
A molecular dynamics simulation study on trapping ions in a nanoscale Paul trap.Nanotechnology. 2008 May 14;19(19):195702. doi: 10.1088/0957-4484/19/19/195702. Epub 2008 Apr 8. Nanotechnology. 2008. PMID: 21825720 Free PMC article.
-
The potential and challenges of nanopore sequencing.Nat Biotechnol. 2008 Oct;26(10):1146-53. doi: 10.1038/nbt.1495. Nat Biotechnol. 2008. PMID: 18846088 Free PMC article. Review.
-
Control and reversal of the electrophoretic force on DNA in a charged nanopore.J Phys Condens Matter. 2010 Nov 17;22(45):454123. doi: 10.1088/0953-8984/22/45/454123. Epub 2010 Oct 29. J Phys Condens Matter. 2010. PMID: 21339610 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous