Beyond FDG: novel PET tracers for cancer imaging
- PMID: 18211857
- PMCID: PMC1434524
- DOI: 10.1102/1470-7330.2003.0032
Beyond FDG: novel PET tracers for cancer imaging
Abstract
Despite the excellent clinical performance of fluorodeoxyglucose (FDG) as a cancer-imaging agent for positron emission tomography (PET), false positive and false negative results can be problematic in some clinical settings. Radiopharmaceutical development has recently focussed on the search for new PET tracers that could complement or replace FDG in such settings. Due to the general availability and favourable physical properties of fluorine-18, much effort has been directed to fluorinated compounds. The most promising of these are discussed.
Figures


Similar articles
-
More advantages in detecting bone and soft tissue metastases from prostate cancer using 18F-PSMA PET/CT.Hell J Nucl Med. 2019 Jan-Apr;22(1):6-9. doi: 10.1967/s002449910952. Epub 2019 Mar 7. Hell J Nucl Med. 2019. PMID: 30843003
-
DaPeCa-3: promising results of sentinel node biopsy combined with (18) F-fluorodeoxyglucose positron emission tomography/computed tomography in clinically lymph node-negative patients with penile cancer - a national study from Denmark.BJU Int. 2016 Jul;118(1):102-11. doi: 10.1111/bju.13243. Epub 2015 Aug 22. BJU Int. 2016. PMID: 26216234
-
Fluorinated tracers for imaging cancer with positron emission tomography.Eur J Nucl Med Mol Imaging. 2004 Aug;31(8):1182-206. doi: 10.1007/s00259-004-1607-9. Epub 2004 Jul 6. Eur J Nucl Med Mol Imaging. 2004. PMID: 15241631 Review.
-
[Fluorinated analogs of nucleosides and fluorinated tracers of gene expression for positron emission tomography].Bull Cancer. 2004 Sep;91(9):695-703. Bull Cancer. 2004. PMID: 15544995 Review. French.
-
Oncologic PET tracers beyond [(18)F]FDG and the novel quantitative approaches in PET imaging.Q J Nucl Med Mol Imaging. 2008 Mar;52(1):50-65. Q J Nucl Med Mol Imaging. 2008. PMID: 18235421 Review.
Cited by
-
Quantitative in vivo cell-surface receptor imaging in oncology: kinetic modeling and paired-agent principles from nuclear medicine and optical imaging.Phys Med Biol. 2015 Jul 21;60(14):R239-69. doi: 10.1088/0031-9155/60/14/R239. Epub 2015 Jul 2. Phys Med Biol. 2015. PMID: 26134619 Free PMC article. Review.
-
The role of PET in monitoring therapy.Cancer Imaging. 2005 Jun 21;5(1):51-7. doi: 10.1102/1470-7330.2005.0006. Cancer Imaging. 2005. PMID: 16154820 Free PMC article.
-
Advancing molecular imaging: a chairman's perspective on how radiology can meet the challenge.Pediatr Radiol. 2011 Feb;41(2):141-3. doi: 10.1007/s00247-010-1777-5. Epub 2010 Aug 31. Pediatr Radiol. 2011. PMID: 20809095
-
Novel positron emission tomography radiotracers in brain tumor imaging.Indian J Radiol Imaging. 2011 Jul;21(3):202-8. doi: 10.4103/0971-3026.85369. Indian J Radiol Imaging. 2011. PMID: 22013296 Free PMC article.
-
Exploring Neoadjuvant Chemotherapy, Predictive Models, Radiomic, and Pathological Markers in Breast Cancer: A Comprehensive Review.Cancers (Basel). 2023 Nov 4;15(21):5288. doi: 10.3390/cancers15215288. Cancers (Basel). 2023. PMID: 37958461 Free PMC article. Review.
References
-
- Strauss LG. Fluorine-18-deoxyglucose and false-positive results: a major problem in the diagnostics of oncological patients. Eur J Nucl Med. 1996;23:1409–15. - PubMed
-
- Shields AF, Grierson JR, Dohmen BM , et al. Imaging in vivo proliferation with [18]FLT and positron emission tomography. Nat Med. 1998;11:1334–6. - PubMed
-
- Mier W, Haberkorn U, Eisenhut M. [18F]FLT; portrait of a proliferation marker. Eur J Nucl Med. 2002;29:165–9. - PubMed
-
- Rasey JS, Grierson JR, Wiens LW, Kolb PD, Schwartz JL. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med. 2002;43:1210–7. - PubMed
-
- Weber WA, Wester HJ, Grosu AL , et al. o-(2-[18F]-Fluoroethyl)-l-tyrosine and 1-[methyl-11C] methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med. 2000;27:542–9. - PubMed
LinkOut - more resources
Full Text Sources