Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Sep;29(9):753-7.
doi: 10.1055/s-2007-989441. Epub 2008 Jan 22.

Allometric scaling of uphill cycling performance

Affiliations

Allometric scaling of uphill cycling performance

S A Jobson et al. Int J Sports Med. 2008 Sep.

Abstract

Previous laboratory-based investigations have identified optimal body mass scaling exponents in the range 0.79-0.91 for uphill cycling. The purpose of this investigation was to evaluate whether or not these exponents are also valid in a field setting. A proportional allometric model was used to predict the optimal power-to-mass ratios associated with road-based uphill time-trial cycling performance. The optimal power function models predicting mean cycle speed during a 5.3 km, 5.4% road hill-climb time-trial were (VO(2max) x m(-1.24))(0.55) and (RMP(max) x m(-1.04))(0.54), explained variance being 84.6% and 70.5%, respectively. Slightly higher mass exponents were observed when the mass predictor was replaced with the combined mass of cyclist and equipment (m(C)). Uphill cycling speed was proportional to (VO(2max) x m(C)(-1.33))(0.57) and (RMP(max) x m(C)(-1.10))(0.59). The curvilinear exponents, 0.54-0.59, identified a relatively strong curvilinear relationship between cycling speed and energy cost, suggesting that air resistance remains influential when cycling up a gradient of 5.4%. These results provide some support for previously reported uphill cycling mass exponents derived in laboratories. However, the exponents reported here were a little higher than those reported previously, a finding possibly explained by a lack of geometric similarity in this sample.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources