Informatics for peptide retention properties in proteomic LC-MS
- PMID: 18214845
- DOI: 10.1002/pmic.200700692
Informatics for peptide retention properties in proteomic LC-MS
Abstract
Retention times in HPLC yield valuable information for the identification of various analytes and the prediction of peptide retention is useful for the identification of peptides/proteins in LC-MS-based proteomics. Informatics methods such as artificial neural networks and support vector machines capable of solving nonlinear problems made possible the accurate modeling of quantitative structure-retention relationships of peptides (including large polymers) up to 5 kDa to which classical linear models cannot be applied, as well as the proteome-wide prediction of peptide retention. Proteome-wide retention prediction and accurate mass-information facilitate the identification of peptides in complex proteomic samples. In this review, we address recent developments in solid informatics methods and their application to peptide-retention properties in 'bottom-up' shotgun proteomics. We also describe future prospects for the standardization and application of retention times.
Similar articles
-
Prediction of liquid chromatographic retention times of peptides generated by protease digestion of the Escherichia coli proteome using artificial neural networks.J Proteome Res. 2006 Dec;5(12):3312-7. doi: 10.1021/pr0602038. J Proteome Res. 2006. PMID: 17137332
-
Improving peptide identification in proteome analysis by a two-dimensional retention time filtering approach.J Proteome Res. 2009 Aug;8(8):4109-15. doi: 10.1021/pr900064b. J Proteome Res. 2009. PMID: 19492844
-
Aligning LC peaks by converting gradient retention times to retention index of peptides in proteomic experiments.Bioinformatics. 2008 Jul 15;24(14):1590-5. doi: 10.1093/bioinformatics/btn240. Epub 2008 May 19. Bioinformatics. 2008. PMID: 18492686
-
Elective affinities--bioinformatic analysis of proteomic mass spectrometry data.Arch Physiol Biochem. 2009 Dec;115(5):311-9. doi: 10.3109/13813450903390039. Arch Physiol Biochem. 2009. PMID: 19911947 Review.
-
Filtering strategies for improving protein identification in high-throughput MS/MS studies.Proteomics. 2009 Feb;9(4):848-60. doi: 10.1002/pmic.200800517. Proteomics. 2009. PMID: 19160393 Review.
Cited by
-
Bioinformatics Tools for Mass Spectroscopy-Based Metabolomic Data Processing and Analysis.Curr Bioinform. 2012 Mar;7(1):96-108. doi: 10.2174/157489312799304431. Curr Bioinform. 2012. PMID: 22438836 Free PMC article.
-
Automated diagnosis of LC-MS/MS performance.Bioinformatics. 2009 May 15;25(10):1341-3. doi: 10.1093/bioinformatics/btp155. Epub 2009 Mar 20. Bioinformatics. 2009. PMID: 19304874 Free PMC article.
-
Improved de novo peptide sequencing using LC retention time information.Algorithms Mol Biol. 2018 Aug 29;13:14. doi: 10.1186/s13015-018-0132-5. eCollection 2018. Algorithms Mol Biol. 2018. PMID: 30181767 Free PMC article.
-
A robust linear regression based algorithm for automated evaluation of peptide identifications from shotgun proteomics by use of reversed-phase liquid chromatography retention time.BMC Bioinformatics. 2008 Aug 19;9:347. doi: 10.1186/1471-2105-9-347. BMC Bioinformatics. 2008. PMID: 18713471 Free PMC article.
-
Quantitative Structure-Retention Relationships with Non-Linear Programming for Prediction of Chromatographic Elution Order.Int J Mol Sci. 2019 Jul 12;20(14):3443. doi: 10.3390/ijms20143443. Int J Mol Sci. 2019. PMID: 31336981 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources