Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jun 1;95 Suppl 1(Suppl 1):S74-S104.
doi: 10.1016/j.drugalcdep.2007.11.013. Epub 2008 Jan 22.

Methods for testing theory and evaluating impact in randomized field trials: intent-to-treat analyses for integrating the perspectives of person, place, and time

Collaborators, Affiliations

Methods for testing theory and evaluating impact in randomized field trials: intent-to-treat analyses for integrating the perspectives of person, place, and time

C Hendricks Brown et al. Drug Alcohol Depend. .

Abstract

Randomized field trials provide unique opportunities to examine the effectiveness of an intervention in real world settings and to test and extend both theory of etiology and theory of intervention. These trials are designed not only to test for overall intervention impact but also to examine how impact varies as a function of individual level characteristics, context, and across time. Examination of such variation in impact requires analytical methods that take into account the trial's multiple nested structure and the evolving changes in outcomes over time. The models that we describe here merge multilevel modeling with growth modeling, allowing for variation in impact to be represented through discrete mixtures--growth mixture models--and nonparametric smooth functions--generalized additive mixed models. These methods are part of an emerging class of multilevel growth mixture models, and we illustrate these with models that examine overall impact and variation in impact. In this paper, we define intent-to-treat analyses in group-randomized multilevel field trials and discuss appropriate ways to identify, examine, and test for variation in impact without inflating the Type I error rate. We describe how to make causal inferences more robust to misspecification of covariates in such analyses and how to summarize and present these interactive intervention effects clearly. Practical strategies for reducing model complexity, checking model fit, and handling missing data are discussed using six randomized field trials to show how these methods may be used across trials randomized at different levels.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Classification of individuals based on entrances and exits.
Fig. 2
Fig. 2
Nonlinear smooth fits of empirical Bayes slopes to intercepts for males in good behavior game (▲) and control (○) classes.

References

    1. Aber JL, Gephart MA, Brooks-Gunn J, Connell JP. Development in context: implications for studying neighborhood effects. In: Brooks-Gunn J, Duncan GJ, Aber JL, editors. Neighborhood Poverty. Russell Sage Foundation; New York: 1997. pp. 44–61.
    1. Angrist JD, Imbens GW, Rubin DB. Identification of causal effects using instrumental variables. J. Am. Stat. Assoc. 1996;91:444–455.
    1. Asparouhov T, Muthèn BO. Multilevel mixture models. In: Hancock GR, Samuelsen KM, editors. Advances in Latent Variable Mixture Models. Information Age Publishing, Inc.; Charlotte, NC: in press.
    1. Baker SG, Fitzmaurice GM, Freedman LS, Kramer BS. Simple adjustments for randomized trials with nonrandomly missing or censored outcomes arising from informative covariates. Biostatistics. 2006;7:29–40. - PubMed
    1. Bandeen-Roche K, Miglioretti DL, Zeger SL, Rathouz PJ. Latent variable regression for multiple discrete outcomes. J. Am. Stat. Assoc. 1997;92:1375–1386.

Publication types

MeSH terms