Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug 16;7(2):17.1-22.
doi: 10.1167/7.2.17.

Measuring visual clutter

Affiliations
Free article

Measuring visual clutter

Ruth Rosenholtz et al. J Vis. .
Free article

Abstract

Visual clutter concerns designers of user interfaces and information visualizations. This should not surprise visual perception researchers because excess and/or disorganized display items can cause crowding, masking, decreased recognition performance due to occlusion, greater difficulty at both segmenting a scene and performing visual search, and so on. Given a reliable measure of the visual clutter in a display, designers could optimize display clutter. Furthermore, a measure of visual clutter could help generalize models like Guided Search (J. M. Wolfe, 1994) by providing a substitute for "set size" more easily computable on more complex and natural imagery. In this article, we present and test several measures of visual clutter, which operate on arbitrary images as input. The first is a new version of the Feature Congestion measure of visual clutter presented in R. Rosenholtz, Y. Li, S. Mansfield, and Z. Jin (2005). This Feature Congestion measure of visual clutter is based on the analogy that the more cluttered a display or scene is, the more difficult it would be to add a new item that would reliably draw attention. A second measure of visual clutter, Subband Entropy, is based on the notion that clutter is related to the visual information in the display. Finally, we test a third measure, Edge Density, used by M. L. Mack and A. Oliva (2004) as a measure of subjective visual complexity. We explore the use of these measures as stand-ins for set size in visual search models and demonstrate that they correlate well with search performance in complex imagery. This includes the search-in-clutter displays of J. M. Wolfe, A. Oliva, T. S. Horowitz, S. Butcher, and A. Bompas (2002) and Bravo and Farid (2004), as well as new search experiments. An additional experiment suggests that color variability, accounted for by Feature Congestion but not the Edge Density measure or the Subband Entropy measure, does matter for visual clutter.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources