Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993;12(4):770-81.
doi: 10.1109/42.251128.

Correction of intensity variations in MR images for computer-aided tissue classification

Affiliations

Correction of intensity variations in MR images for computer-aided tissue classification

B M Dawant et al. IEEE Trans Med Imaging. 1993.

Abstract

A number of supervised and unsupervised pattern recognition techniques have been proposed in recent years for the segmentation and the quantitative analysis of MR images. However, the efficacy of these techniques is affected by acquisition artifacts such as inter-slice, intra-slice, and inter-patient intensity variations. Here a new approach to the correction of intra-slice intensity variations is presented. Results demonstrate that the correction process enhances the performance of backpropagation neural network classifiers designed for the segmentation of the images. Two slightly different versions of the method are presented. The first version fits an intensity correction surface directly to reference points selected by the user in the images. The second version fits the surface to reference points obtained by an intermediate classification operation. Qualitative and quantitative evaluation of both methods reveals that the first one leads to a better correction of the images than the second but that it is more sensitive to operator errors.

PubMed Disclaimer

LinkOut - more resources