Chemically derived, ultrasmooth graphene nanoribbon semiconductors
- PMID: 18218865
- DOI: 10.1126/science.1150878
Chemically derived, ultrasmooth graphene nanoribbon semiconductors
Abstract
We developed a chemical route to produce graphene nanoribbons (GNR) with width below 10 nanometers, as well as single ribbons with varying widths along their lengths or containing lattice-defined graphene junctions for potential molecular electronics. The GNRs were solution-phase-derived, stably suspended in solvents with noncovalent polymer functionalization, and exhibited ultrasmooth edges with possibly well-defined zigzag or armchair-edge structures. Electrical transport experiments showed that, unlike single-walled carbon nanotubes, all of the sub-10-nanometer GNRs produced were semiconductors and afforded graphene field effect transistors with on-off ratios of about 10(7) at room temperature.
Similar articles
-
Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes.ACS Nano. 2012 May 22;6(5):3943-53. doi: 10.1021/nn300137j. Epub 2012 Apr 18. ACS Nano. 2012. PMID: 22483078
-
Graphene nanoribbons from unzipped carbon nanotubes: atomic structures, Raman spectroscopy, and electrical properties.J Am Chem Soc. 2011 Jul 13;133(27):10394-7. doi: 10.1021/ja203860a. Epub 2011 Jun 21. J Am Chem Soc. 2011. PMID: 21678963
-
C-BN single-walled nanotubes from hybrid connection of BN/C nanoribbons: prediction by ab initio density functional calculations.J Am Chem Soc. 2009 Feb 11;131(5):1682-3. doi: 10.1021/ja809053x. J Am Chem Soc. 2009. PMID: 19152268
-
Sharpening the chemical scissors to unzip carbon nanotubes: crystalline graphene nanoribbons.ACS Nano. 2010 Apr 27;4(4):1775-81. doi: 10.1021/nn1006607. ACS Nano. 2010. PMID: 20420468 Review.
-
Carbon-based electronics.Nat Nanotechnol. 2007 Oct;2(10):605-15. doi: 10.1038/nnano.2007.300. Epub 2007 Sep 30. Nat Nanotechnol. 2007. PMID: 18654384 Review.
Cited by
-
Fano effect and bound state in continuum in electron transport through an armchair graphene nanoribbon with line defect.Nanoscale Res Lett. 2013 Jul 22;8(1):330. doi: 10.1186/1556-276X-8-330. Nanoscale Res Lett. 2013. PMID: 23870061 Free PMC article.
-
Tip-Based Nanofabrication of Arbitrary Shapes of Graphene Nanoribbons for Device Applications.RSC Adv. 2015 Jan 1;5(46):37006-37012. doi: 10.1039/C5RA04257G. Epub 2015 Apr 15. RSC Adv. 2015. PMID: 26257891 Free PMC article.
-
Graphene nanomesh as highly sensitive chemiresistor gas sensor.Anal Chem. 2012 Oct 2;84(19):8171-8. doi: 10.1021/ac3012895. Epub 2012 Sep 13. Anal Chem. 2012. PMID: 22931286 Free PMC article.
-
In situ observation of graphene sublimation and multi-layer edge reconstructions.Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10103-8. doi: 10.1073/pnas.0905193106. Epub 2009 Jun 10. Proc Natl Acad Sci U S A. 2009. PMID: 19515820 Free PMC article.
-
Narrow graphene nanoribbons from carbon nanotubes.Nature. 2009 Apr 16;458(7240):877-80. doi: 10.1038/nature07919. Nature. 2009. PMID: 19370031
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources