Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Jun;1(2):285-95.
doi: 10.2174/157489206777442287.

Recent Developments in the Field of Anticancer Platinum Complexes

Affiliations
Review

Recent Developments in the Field of Anticancer Platinum Complexes

Mathea Sophia Galanski. Recent Pat Anticancer Drug Discov. 2006 Jun.

Abstract

Cisplatin, carboplatin and oxaliplatin continue to be among the most efficient anticancer drugs in world-wide clinical use so far. In particular, cisplatin has shown a remarkable therapeutic efficacy in a broad spectrum of solid tumors and outstanding activity against metastatic testicular germ-cell cancer with cure rates of about 90% of cases. Nevertheless, the dose-limiting severe toxic side-effects of platinum-based chemotherapy, the problem of inherent or therapy-induced resistance, the limited activity in a range of tumors, and the meager tumor selectivity are the motivation for tremendous efforts and inventions in the development of novel anticancer platinum drugs. This article reviews the most recent patents in this field of research, covering the following strategies in the design of promising anticancer platinum complexes: (i) synthesis of new anticancer platinum complexes, using combinatorial chemistry and high throughput synthesis and screening, (ii) activation of platinum complexes in the tumor tissue, (iii) accumulation of platinum complexes at the tumor site, (iv) novel platinum complexes, displaying activity against cisplatin resistant cells and as inhibitors of specific biological functions, and (v) direct derivatives of classical anticancer platinum drugs in clinical use.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources