Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Nov;76(5 Pt 1):051910.
doi: 10.1103/PhysRevE.76.051910. Epub 2007 Nov 12.

Fluctuations of coupled fluid and solid membranes with application to red blood cells

Affiliations

Fluctuations of coupled fluid and solid membranes with application to red blood cells

Thorsten Auth et al. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Nov.

Abstract

The fluctuation spectra and the intermembrane interaction of two membranes at a fixed average distance are investigated. Each membrane can either be a fluid or a solid membrane, and in isolation, its fluctuations are described by a bare or a wave-vector-dependent bending modulus, respectively. The membranes interact via their excluded-volume interaction; the average distance is maintained by an external, homogeneous pressure. For strong coupling, the fluctuations can be described by a single, effective membrane that combines the elastic properties. For weak coupling, the fluctuations of the individual, noninteracting membranes are recovered. The case of a composite membrane consisting of one fluid and one solid membrane can serve as a microscopic model for the plasma membrane and cytoskeleton of the red blood cell. We find that, despite the complex microstructure of bilayers and cytoskeletons in a real cell, the fluctuations with wavelengths lambda greater, similar 400 nm are well described by the fluctuations of a single, polymerized membrane (provided that there are no inhomogeneities of the microstructure). The model is applied to the fluctuation data of discocytes ("normal" red blood cells), a stomatocyte, and an echinocyte. The elastic parameters of the membrane and an effective temperature that quantifies active, metabolically driven fluctuations are extracted from the experiments.

PubMed Disclaimer

Publication types