Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Aug;34(6):880-97.
doi: 10.1016/j.envint.2007.12.012. Epub 2008 Jan 30.

Effects of non-human species irradiation after the Chernobyl NPP accident

Affiliations
Review

Effects of non-human species irradiation after the Chernobyl NPP accident

S A Geras'kin et al. Environ Int. 2008 Aug.

Abstract

The area affected by the Chernobyl Nuclear Power Plant accident in 1986 has become a unique test site where long-term ecological and biological consequences of a drastic change in a range of environmental factors as well as trends and intensity of selection are studied in natural settings. The consequences of the Chernobyl accident for biota varied from an enhanced rate of mutagenesis to damage at the ecosystem level. The review comprehensively brings together key data of the long-term studies of biological effects in plants and animals inhabiting over 20 years the Chernobyl NPP zone. The severity of radiation effects was strongly dependent on the dose received in the early period after the accident. The most exposed phytocenoses and soil animals' communities exhibited dose dependent alterations in the species composition and reduction in biological diversity. On the other hand, no decrease in numbers or taxonomic diversity of small mammals even in the most radioactive habitat was shown. In a majority of the studies, in both plant and animal populations from the Chernobyl zone, in the first years after the accident high increases in mutation rates were documented. In most cases the dose-effect relationships were nonlinear and the mutation rates per unit dose were higher at low doses and dose rates. In subsequent years a decline in the radiation background rate occurred faster than reduction in the mutation rate. Plant and animal populations have shown signs of adaptation to chronic exposure. In adaptation to the enhanced level of exposure an essential role of epigenetic mechanisms of gene expression regulation was shown. Based on the Chernobyl NPP accident studies, in the present review attempts were made to assess minimum doses at which ecological and biological effects were observed.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources