Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 May;3(5):690-713.
doi: 10.1002/cmdc.200700300.

G-quadruplexes: targets in anticancer drug design

Affiliations
Review

G-quadruplexes: targets in anticancer drug design

Tian-miao Ou et al. ChemMedChem. 2008 May.

Abstract

G-quadruplexes are special secondary structures adopted in some guanine-rich DNA sequences. As guanine-rich sequences are present in important regions of the eukaryotic genome, such as telomeres and the regulatory regions of many genes, such structures may play important roles in the regulation of biological events in the body. G-quadruplexes have become valid targets for new anticancer drugs in the past few decades. Many leading compounds that target these structures have been reported, and a few of them have entered preclinical or clinical trials. Nonetheless, the selectivity of this kind of antitumor compound has yet to be improved in order to suppress the side effects caused by nonselective binding. As drug design targets, the topology and structural characteristics of quadruplexes, their possible biological roles, and the modes and sites of small-ligand binding to these structures should be understood clearly. Herein we provide a summary of published research that has set out to address the above problem to provide useful information on the design of small ligands that target G-quadruplexes. This review also covers research methodologies that have been developed to study the binding of ligands to G-quadruplexes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources