Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Feb;331(2):164-70.
doi: 10.1016/j.crvi.2007.12.002. Epub 2008 Jan 15.

[Salt tolerance of Setaria verticillata L.: a short-cycle poaceae]

[Article in French]
Affiliations
Free article

[Salt tolerance of Setaria verticillata L.: a short-cycle poaceae]

[Article in French]
Hela Ben Ahmed et al. C R Biol. 2008 Feb.
Free article

Abstract

The responses of growth, development, and nutrition to salt stress are examined in short-cycle Setaria verticillata. For these, two experiments are led. The first intended to study the effects of various concentrations of NaCl on the parameters of growth and nutrition during the vegetative phase. Fifteen-day-old platelets were grown on commercial peat irrigated with pure NaCl solutions (0 to 300 mM). After three weeks of culture, the plants were collected and divided into roots and shoots. The fresh and dry matter masses of the various bodies are given. The second experiment was intended to study the effect of different concentrations of NaCl on crop plants until maturity. The culture was led under the same conditions as the preceding one, but for three months until the end of the cycle (production and maturation of the seeds). At harvest, the plants were separated in roots, shoots, and grains. During all the development cycle, Setaria vertillata was very sensitive to salinity. The concentration of NaCl that caused an important reduction of dry weight production was about 75 mM. Dry matter deposition was more diminished in roots than shoots. The reduction of the production of growth observed seems associated with a higher accumulation of Na(+) in shoots and with a deficit alimentation of organs in K(+). During the reproductive phase, salt affects the components of the output and induces variability on the level of the production of biomass as significant as that noted during the phase of vegetative growth. Lastly, the capacity of germination of seeds was strongly dependent on the salt concentration of the culture medium of the plants mothers, a total loss of viability appearing on crop plants collected in the presence of NaCl 300 mM.

PubMed Disclaimer

Similar articles

Publication types

MeSH terms

LinkOut - more resources