Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2008 Mar 15;471(2):168-75.
doi: 10.1016/j.abb.2008.01.013. Epub 2008 Jan 26.

Role of alphaPhe-291 residue in the phosphate-binding subdomain of catalytic sites of Escherichia coli ATP synthase

Affiliations
Comparative Study

Role of alphaPhe-291 residue in the phosphate-binding subdomain of catalytic sites of Escherichia coli ATP synthase

Laura E Brudecki et al. Arch Biochem Biophys. .

Abstract

The role of alphaPhe-291 residue in phosphate binding by Escherichia coli F1F0-ATP synthase was examined. X-ray structures of bovine mitochondrial enzyme suggest that this residue resides in close proximity to the conserved betaR246 residue. Herein, we show that mutations alphaF291D and alphaF291E in E. coli reduce the ATPase activity of F1F0 membranes by 350-fold. Yet, significant oxidative phosphorylation activity is retained. In contrast to wild-type, ATPase activities of mutants were not inhibited by MgADP-azide, MgADP-fluoroaluminate, or MgADP-fluoroscandium. Whereas, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) inhibited wild-type ATPase essentially completely, ATPase in mutants was inhibited maximally by approximately 75%, although reaction still occurred at residue betaTyr-297, proximal to alphaPhe-291 in the phosphate-binding pocket. Inhibition characteristics supported the conclusion that NBD-Cl reacts in betaE (empty) catalytic sites, as shown previously by X-ray structure analysis. Phosphate protected against NBD-Cl inhibition in wild-type but not in mutants. In addition, our data suggest that the interaction of alphaPhe-291 with phosphate during ATP hydrolysis or synthesis may be distinct.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources