Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Jun;8(3):333-8.
doi: 10.1016/j.coph.2007.12.010. Epub 2008 Feb 1.

New insights into mechanisms of statin-associated myotoxicity

Affiliations
Review

New insights into mechanisms of statin-associated myotoxicity

Pascal Sirvent et al. Curr Opin Pharmacol. 2008 Jun.

Abstract

Statin drugs represent a major improvement in the treatment of hypercholesterolemia that constitutes the main origin of atherosclerosis, leading to coronary heart disease. Besides the tremendous beneficial effects of statins, various forms of muscular toxicity (myalgia, cramp, exercise intolerance, fatigability) occur frequently. Many hypotheses were proposed to explain statin myotoxicity. The goal of this review is to highlight some of the most recent findings that can account for interpreting the pathophysiological mechanisms for statin-induced myotoxicity. Statin-induced myotoxicity appears multifactorial. Apart from the deleterious effect due to a reduction in cholesterol biosynthesis, statins have a direct effect on the respiratory chain of the mitochondria. It is proposed that mitochondrial impairment leads to a mitochondrial calcium leak that directly interferes with the regulation of sarcoplasmic reticulum calcium cycling without excluding a direct effect of statin on the sarcoplasmic reticulum. Both mitochondrial and calcium impairments may account for apoptosis process, oxidative stress, and muscle remodeling and degeneration that have been extensively reported to explain statin myotoxicity and functional symptoms described by treated patients.

PubMed Disclaimer

Publication types

MeSH terms

Substances