Microtubule assembly dynamics: new insights at the nanoscale
- PMID: 18243676
- PMCID: PMC2547410
- DOI: 10.1016/j.ceb.2007.12.003
Microtubule assembly dynamics: new insights at the nanoscale
Abstract
Although the dynamic self-assembly behavior of microtubule ends has been well characterized at the spatial resolution of light microscopy (~200 nm), the single-molecule events that lead to these dynamics are less clear. Recently, a number of in vitro studies used novel approaches combining laser tweezers, microfabricated chambers, and high-resolution tracking of microtubule-bound beads to characterize mechanochemical aspects of MT dynamics at nanometer scale resolution. In addition, computational modeling is providing a framework for integrating these experimental results into physically plausible models of molecular scale microtubule dynamics. These nanoscale studies are providing new fundamental insights about microtubule assembly, and will be important for advancing our understanding of how microtubule dynamic instability is regulated in vivo via microtubule-associated proteins, therapeutic agents, and mechanical forces.
Figures


Similar articles
-
Optical Tweezers-Based Measurements of Forces and Dynamics at Microtubule Ends.Methods Mol Biol. 2017;1486:411-435. doi: 10.1007/978-1-4939-6421-5_16. Methods Mol Biol. 2017. PMID: 27844438
-
Assembly dynamics of microtubules at molecular resolution.Nature. 2006 Aug 10;442(7103):709-12. doi: 10.1038/nature04928. Epub 2006 Jun 25. Nature. 2006. PMID: 16799566
-
Tracking the ends: a dynamic protein network controls the fate of microtubule tips.Nat Rev Mol Cell Biol. 2008 Apr;9(4):309-22. doi: 10.1038/nrm2369. Epub 2008 Mar 5. Nat Rev Mol Cell Biol. 2008. PMID: 18322465 Review.
-
Quantitative analysis of microtubule self-assembly kinetics and tip structure.Methods Enzymol. 2014;540:35-52. doi: 10.1016/B978-0-12-397924-7.00003-0. Methods Enzymol. 2014. PMID: 24630100
-
Nanometer-resolution microtubule polymerization assays using optical tweezers and microfabricated barriers.Methods Cell Biol. 2010;95:207-19. doi: 10.1016/S0091-679X(10)95012-7. Methods Cell Biol. 2010. PMID: 20466137 Review.
Cited by
-
Mechanochemical modeling of dynamic microtubule growth involving sheet-to-tube transition.PLoS One. 2011;6(12):e29049. doi: 10.1371/journal.pone.0029049. Epub 2011 Dec 20. PLoS One. 2011. PMID: 22205994 Free PMC article.
-
Deficiency of copper responsive gene stmn4 induces retinal developmental defects.Cell Biol Toxicol. 2024 Jan 22;40(1):2. doi: 10.1007/s10565-024-09847-8. Cell Biol Toxicol. 2024. PMID: 38252267 Free PMC article.
-
Sensor potency of the moonlighting enzyme-decorated cytoskeleton: the cytoskeleton as a metabolic sensor.BMC Biochem. 2013 Feb 11;14:3. doi: 10.1186/1471-2091-14-3. BMC Biochem. 2013. PMID: 23398642 Free PMC article.
-
Identification of novel filament-forming proteins in Saccharomyces cerevisiae and Drosophila melanogaster.J Cell Biol. 2010 Aug 23;190(4):541-51. doi: 10.1083/jcb.201003001. Epub 2010 Aug 16. J Cell Biol. 2010. PMID: 20713603 Free PMC article.
-
Random hydrolysis controls the dynamic instability of microtubules.Biophys J. 2012 Mar 21;102(6):1274-83. doi: 10.1016/j.bpj.2011.12.059. Epub 2012 Mar 20. Biophys J. 2012. PMID: 22455910 Free PMC article.
References
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources