FPGA implementation of ICA algorithm for blind signal separation and adaptive noise canceling
- PMID: 18244558
- DOI: 10.1109/TNN.2003.818381
FPGA implementation of ICA algorithm for blind signal separation and adaptive noise canceling
Abstract
An field programmable gate array (FPGA) implementation of independent component analysis (ICA) algorithm is reported for blind signal separation (BSS) and adaptive noise canceling (ANC) in real time. In order to provide enormous computing power for ICA-based algorithms with multipath reverberation, a special digital processor is designed and implemented in FPGA. The chip design fully utilizes modular concept and several chips may be put together for complex applications with a large number of noise sources. Experimental results with a fabricated test board are reported for ANC only, BSS only, and simultaneous ANC/BSS, which demonstrates successful speech enhancement in real environments in real time.
Similar articles
-
Implementation of pipelined FastICA on FPGA for real-time blind source separation.IEEE Trans Neural Netw. 2008 Jun;19(6):958-70. doi: 10.1109/TNN.2007.915115. IEEE Trans Neural Netw. 2008. PMID: 18541497
-
Edge computing for space applications: Field programmable gate array-based implementation of multiscale probability distribution functions.Rev Sci Instrum. 2018 Dec;89(12):125005. doi: 10.1063/1.5044425. Rev Sci Instrum. 2018. PMID: 30599577
-
Efficient blind dereverberation and echo cancellation based on independent component analysis for actual acoustic signals.Neural Comput. 2012 Jan;24(1):234-72. doi: 10.1162/NECO_a_00219. Epub 2011 Oct 24. Neural Comput. 2012. PMID: 22023192
-
A Survey of Optimization Methods for Independent Vector Analysis in Audio Source Separation.Sensors (Basel). 2023 Jan 2;23(1):493. doi: 10.3390/s23010493. Sensors (Basel). 2023. PMID: 36617090 Free PMC article. Review.
-
Field-Programmable Gate Array (FPGA)-Based Lock-In Amplifier System with Signal Enhancement: A Comprehensive Review on the Design for Advanced Measurement Applications.Sensors (Basel). 2025 Jan 20;25(2):584. doi: 10.3390/s25020584. Sensors (Basel). 2025. PMID: 39860956 Free PMC article. Review.
Cited by
-
A Null Space-Based Blind Source Separation for Fetal Electrocardiogram Signals.Sensors (Basel). 2020 Jun 22;20(12):3536. doi: 10.3390/s20123536. Sensors (Basel). 2020. PMID: 32580397 Free PMC article.
-
Micropower Mixed-signal VLSI Independent Component Analysis for Gradient Flow Acoustic Source Separation.IEEE Trans Circuits Syst I Regul Pap. 2016 Jul;63(7):972-981. doi: 10.1109/TCSI.2016.2556122. Epub 2016 Jun 29. IEEE Trans Circuits Syst I Regul Pap. 2016. PMID: 28163663 Free PMC article.
-
Fetal Electrocardiogram Extraction and Analysis Using Adaptive Noise Cancellation and Wavelet Transformation Techniques.J Med Syst. 2017 Dec 8;42(1):21. doi: 10.1007/s10916-017-0868-3. J Med Syst. 2017. PMID: 29222728
-
[A fetal electrocardiogram signal extraction method based on long short term memory network optimized by genetic algorithm].Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Apr 25;38(2):257-267. doi: 10.7507/1001-5515.202004063. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021. PMID: 33913285 Free PMC article. Chinese.
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous