Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Mar-Apr;99(2):137-48.
doi: 10.1093/jhered/esm119. Epub 2008 Feb 2.

Evaluating connectivity in the brooding brittle star Astrotoma agassizii across the drake passage in the Southern Ocean

Affiliations

Evaluating connectivity in the brooding brittle star Astrotoma agassizii across the drake passage in the Southern Ocean

Rebecca L Hunter et al. J Hered. 2008 Mar-Apr.

Abstract

Studies examining population structure and genetic diversity of benthic marine invertebrates in the Southern Ocean have emerged in recent years. However, many taxonomic groups remain largely unstudied, echinoderms being one conspicuous example. The brittle star Astrotoma agassizii is distributed widely throughout Antarctica and southern South America. This species is a brooding echinoderm and therefore may have limited dispersal capacity. In order to determine the effect of hypothesized isolating barriers in the Southern Ocean, such as depth, geographic distance, and the polar front, 2 mitochondrial DNA markers were used to compare populations from the South American and Antarctic continental shelves. Astrotoma agassizii was shown to be genetically discontinuous across the polar front. In fact, populations previously assumed to be panmictic instead represent 3 separate lineages that lack morphological distinction. However, within lineages, genetic continuity was displayed across a large geographic range (>500 km). Therefore, despite lacking a pelagic larval stage, A. agassizii can disperse across substantial geographic distance within continental shelf regions. These results indicate that geographic distance alone may not be a barrier to dispersal, but rather the combined effects of distance, depth, and the polar front act to prevent gene flow between A. agassizii populations in the Southern Ocean.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources