Glucocorticoids and cyclic AMP selectively increase hepatic lipin-1 expression, and insulin acts antagonistically
- PMID: 18245816
- PMCID: PMC2311443
- DOI: 10.1194/jlr.M800013-JLR200
Glucocorticoids and cyclic AMP selectively increase hepatic lipin-1 expression, and insulin acts antagonistically
Abstract
Glucocorticoids (GCs) increase hepatic phosphatidate phosphatase (PAP1) activity. This is important in enhancing the liver's capacity for storing fatty acids as triacylglycerols (TAGs) that can be used subsequently for beta-oxidation or VLDL secretion. PAP1 catalyzes the conversion of phosphatidate to diacylglycerol, a key substrate for TAG and phospholipid biosynthesis. PAP1 enzymes in liver include lipin-1A and -1B (alternatively spliced isoforms) and two distinct gene products, lipin-2 and lipin-3. We determined the mechanisms by which the composite PAP1 activity is regulated using rat and mouse hepatocytes. Levels of lipin-1A and -1B mRNA were increased by dexamethasone (dex; a synthetic GC), and this resulted in increased lipin-1 synthesis, protein levels, and PAP1 activity. The stimulatory effect of dex on lipin-1 expression was enhanced by glucagon or cAMP and antagonized by insulin. Lipin-2 and lipin-3 mRNA were not increased by dex/cAMP, indicating that increased PAP1 activity is attributable specifically to enhanced lipin-1 expression. This work provides the first evidence for the differential regulation of lipin activities. Selective lipin-1 expression explains the GC and cAMP effects on increased hepatic PAP1 activity, which occurs in hepatic steatosis during starvation, diabetes, stress, and ethanol consumption.
Figures










References
-
- Jamal Z., A. Martin, A. Gomez-Munoz, and D. N. Brindley. 1991. Plasma membrane fractions from rat liver contain a phosphatidate phosphohydrolase distinct from that in the endoplasmic reticulum and cytosol. J. Biol. Chem. 266 2988–2996. - PubMed
-
- Brindley D. N. 2004. Lipid phosphate phosphatases and related proteins: signaling functions in development, cell division, and cancer. J. Cell. Biochem. 92 900–912. - PubMed
-
- Donkor J., M. Sariahmetoglu, J. Dewald, D. N. Brindley, and K. Reue. 2007. Three mammalian lipins act as phosphatidate phosphatases with distinct tissue expression patterns. J. Biol. Chem. 282 3450–3457. - PubMed
-
- Brindley, D. N. 1988. Phosphatidate Phosphohydrolase: Its Role in Glycerolipid Synthesis. CRC Press, Boca Raton, FL. 21–77.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources