Recruitment and dissociation of nonhomologous end joining proteins at a DNA double-strand break in Saccharomyces cerevisiae
- PMID: 18245831
- PMCID: PMC2278085
- DOI: 10.1534/genetics.107.083535
Recruitment and dissociation of nonhomologous end joining proteins at a DNA double-strand break in Saccharomyces cerevisiae
Abstract
Nonhomologous end joining (NHEJ) is an important DNA double-strand-break (DSB) repair pathway that requires three protein complexes in Saccharomyces cerevisiae: the Ku heterodimer (Yku70-Yku80), MRX (Mre11-Rad50-Xrs2), and DNA ligase IV (Dnl4-Lif1), as well as the ligase-associated protein Nej1. Here we use chromatin immunoprecipitation from yeast to dissect the recruitment and release of these protein complexes at HO-endonuclease-induced DSBs undergoing productive NHEJ. Results revealed that Ku and MRX assembled at a DSB independently and rapidly after DSB formation. Ligase IV appeared at the DSB later than Ku and MRX and in a strongly Ku-dependent manner. Ligase binding was extensive but slightly delayed in rad50 yeast. Ligase IV binding occurred independently of Nej1, but instead promoted loading of Nej1. Interestingly, dissociation of Ku and ligase from unrepaired DSBs depended on the presence of an intact MRX complex and ATP binding by Rad50, suggesting a possible role of MRX in terminating a NHEJ repair phase. This activity correlated with extended DSB resection, but limited degradation of DSB ends occurred even in MRX mutants with persistently bound Ku. These findings reveal the in vivo assembly of the NHEJ repair complex and shed light on the mechanisms controlling DSB repair pathway utilization.
Figures









Similar articles
-
Recruitment of Saccharomyces cerevisiae Dnl4-Lif1 complex to a double-strand break requires interactions with Yku80 and the Xrs2 FHA domain.Genetics. 2008 Dec;180(4):1809-19. doi: 10.1534/genetics.108.095539. Epub 2008 Oct 1. Genetics. 2008. PMID: 18832348 Free PMC article.
-
Mutations of the Yku80 C terminus and Xrs2 FHA domain specifically block yeast nonhomologous end joining.Mol Cell Biol. 2005 Dec;25(24):10782-90. doi: 10.1128/MCB.25.24.10782-10790.2005. Mol Cell Biol. 2005. PMID: 16314503 Free PMC article.
-
Role of Dnl4-Lif1 in nonhomologous end-joining repair complex assembly and suppression of homologous recombination.Nat Struct Mol Biol. 2007 Jul;14(7):639-46. doi: 10.1038/nsmb1261. Epub 2007 Jun 24. Nat Struct Mol Biol. 2007. PMID: 17589524
-
Consider the workhorse: Nonhomologous end-joining in budding yeast.Biochem Cell Biol. 2016 Oct;94(5):396-406. doi: 10.1139/bcb-2016-0001. Epub 2016 Mar 31. Biochem Cell Biol. 2016. PMID: 27240172 Free PMC article. Review.
-
Tying up loose ends: nonhomologous end-joining in Saccharomyces cerevisiae.Mutat Res. 2000 Jun 30;451(1-2):71-89. doi: 10.1016/s0027-5107(00)00041-5. Mutat Res. 2000. PMID: 10915866 Review.
Cited by
-
DNA repair choice defines a common pathway for recruitment of chromatin regulators.Nat Commun. 2013;4:2084. doi: 10.1038/ncomms3084. Nat Commun. 2013. PMID: 23811932 Free PMC article.
-
Pathways for genome integrity in G2 phase of the cell cycle.Biomolecules. 2012 Nov 30;2(4):579-607. doi: 10.3390/biom2040579. Biomolecules. 2012. PMID: 24970150 Free PMC article.
-
The RNF138 E3 ligase displaces Ku to promote DNA end resection and regulate DNA repair pathway choice.Nat Cell Biol. 2015 Nov;17(11):1446-57. doi: 10.1038/ncb3259. Epub 2015 Oct 26. Nat Cell Biol. 2015. PMID: 26502055
-
The non-homologous end-joining factor Nej1 inhibits resection mediated by Dna2-Sgs1 nuclease-helicase at DNA double strand breaks.J Biol Chem. 2017 Sep 1;292(35):14576-14586. doi: 10.1074/jbc.M117.796011. Epub 2017 Jul 5. J Biol Chem. 2017. PMID: 28679532 Free PMC article.
-
A conserved Ctp1/CtIP C-terminal peptide stimulates Mre11 endonuclease activity.Proc Natl Acad Sci U S A. 2021 Mar 16;118(11):e2016287118. doi: 10.1073/pnas.2016287118. Proc Natl Acad Sci U S A. 2021. PMID: 33836577 Free PMC article.
References
-
- Anderson, D. E., K. M. Trujillo, P. Sung and H. P. Erickson, 2001. Structure of the Rad50 × Mre11 DNA repair complex from Saccharomyces cerevisiae by electron microscopy. J. Biol. Chem. 276 37027–37033. - PubMed
-
- Aparicio, O., J. V. Geisberg, E. Sekinger, A. Yang, Z. Moqtaderi et al., 2005. Chromatin immunoprecipitation for determining the association of proteins with specific genomic sequences in vivo, pp. 21.3.1–21.3.33 in Current Protocols in Molecular Biology, edited by F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith and K. Struhl. John Wiley & Sons, New York. - PubMed
-
- Boeger, H., J. Griesenbeck, J. S. Strattan and R. D. Kornberg, 2003. Nucleosomes unfold completely at a transcriptionally active promoter. Mol. Cell 11 1587–1598. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous